Geometric mixing models as a tool for investigating the ice shell of Europa
Annie Cheng / Stanford UniversityCambridge Fluids Network - fluids-related seminars4 June 2025 1:15pmThe Hoyle Lecture Theatre + Zoom The presence of liquid water is vital to the understanding of a planetary body’s climate, geological history, and habitability. The use of ice-penetrating radar as a probe for subsurface hydrology has been demonstrated across Earth and nearby planetary bodies. Radar sounding has uncovered hundreds of subglacial lakes across the Antarctic and Greenland ice sheets, while a recent mission to Mars (MARSIS) found anomalously bright reflectances suggesting the presence of a subglacial lake at the South Polar Layered Deposits. The recently launched Europa Clipper is similarly equipped with an ice-penetrating radar instrument, REASON, which will search for evidence of liquid water on Europa as an indicator of habitability.
However, the uniqueness of reflectivity as an identifier for subglacial water bodies has recently been called into question: conductive sediments and brine inclusions in ice have been proposed as alternate hypotheses for the origin of water-like radar signals at Mars and the Devon ice cap. Conventional approaches to studying the effective permittivity of such mixtures assume an isotropic distribution; here we apply geometric mixing models to account for realistic, anisotropic brine geometries. We demonstrate how geometric mixing models can provide more exact constraints on the presence and geometric distribution of liquid water in Europa’s ice shell. We further discuss the detectability of the eutectic zone in the ice shell and its implications for its thermal structure.