Influences of droplet diameter and overall equivalence ratio on the flame structure for spherically expanding flames propagating in fuel droplet-mist: A Direct Numerical Simulaton Analysis

G. Ozel Erol and N. Chakraborty

School of Engineering, Newcastle University, UK

Joint SIG Meeting Spray-Combustion 8th-9th April, 2019 Imperial College London

Contents

Introduction: Motivation

Includes the critical processes:

- evaporation of liquid droplets
- mixing of fuel vapour with the surrounding air
- interaction of droplets with the flame and flow field

Significant practical relevance of:

- Internal Combustion (IC) engines
- Gas turbines
- Industrial furnaces

Introduction: Objectives

to demonstrate and explain the influences of droplet size and the overall equivalence ratio on

- ✓ the flame structure and wrinkling
- ✓ the evolution of flame surface area and
- ✓ the evolution of burned gas volume
- ✓ displacement and consumption speeds

in spherically expanding *laminar* and *turbulent* n-heptane spray flames.

to compare the results obtained from spray flames with the corresponding gaseous premixed flames.

Liquid Phase:

Lagrangian Approach is used for droplets following the approach proposed by Reveillon & Vervisch.

• Position:
$$\frac{d\vec{x}_d}{dt} = \vec{u}_d$$
 • Velocity: $\frac{d\vec{u}_d}{dt} = \frac{\vec{u}(\vec{x}_d,t) - \vec{u}_d}{\tau_d^u}$
• Diameter: $\frac{da_d^2}{dt} = \frac{a_d^2}{\tau_d^p}$ • Temperature: $\frac{dT_d}{dt} = \frac{\hat{T}(\vec{x}_d,t) - T_d - B_d L_v / C_d^u}{\tau_d^T}$

 L_{v} is the latent heat of vaporization B_{d} is the Spalding mass transfer number C_{p}^{g} is the gaseous specific heats at constant pressure

Relaxation time scales associated with droplet:

- Velocity, τ_d^u
- Diameter, τ_d^p
- Temperature, τ_d^T

Reveillon, J., Vervisch, L.: Spray vaporization in non-premixed turbulent combustion modelling: a single droplet model. Combust. Flame 121, 75–90 (2000).

Gaseous Phase:

Eulerian Approach is used to solve for gas phase combustion.

Coupling between two phases:

$$\frac{\partial \rho \psi}{\partial t} + \frac{\partial \rho u_j \psi}{\partial x_j} = \frac{\partial}{\partial x_j} \left(\Gamma_{\psi} \frac{\partial \psi_1}{\partial x_j} \right) + \dot{w}_{\psi} + \dot{S}_g + \dot{S}_{\psi}$$

 $\psi_1 = \{1, u_j, \hat{T}, Y_F, Y_O\}$ for $\psi = \{1, u_j, e, Y_F, Y_O\}$ $\Gamma_{\psi} = \rho \nu / \sigma_{\psi}$ for $\psi = \{1, u_j, Y_F, Y_O\}$ and $\Gamma_{\psi} = \lambda$ for $\psi = e$ \dot{w}_{ψ} is chemical reaction rate, \dot{S}_g is an appropriate source/sink term and \dot{S}_{ψ} is *source term due to droplet evaporation*, which is tri-linearly

 \dot{S}_{ψ} is source term due to droplet evaporation, which is tri-linearly interpolated from the droplet's sub-grid position, \vec{x}_d , to the eight surrounding nodes.

Newcastle

niversity

Code:

- 3D, compressible DNS code, SENGA+
- 10th order central difference scheme
- Time advancement: Explicit low-storage 3rd order Runge-Kutta scheme.
- A modified single-step Arrhenius-type irreversible chemical reaction:
- Droplets are treated as sub-grid point sources.

Variation of the (a) normalised laminar burning velocity $S_{b(\phi_g)}/\{S_{b(\phi_g)}\}_{max}$ and (b) normalised adiabatic flame temperature $T_{b(\phi_g)} = (T_{ad(\phi_g)} - T_0)/(T_{ad(\phi_{g=1})} - T_0)$ with equivalence ratio ϕ_g for n-heptane obtained from modified single step chemistry (Tarrazo *et al.*, 2006), detailed chemical mechanism (Chaos *et al.*, 2007) and experimental (Kumar *et al.*, 2007) data.

Chaos, M. et al., A high-temperature chemical kinetic model for primary reference fuels. Int. J. Chem. Kinet. 39, (2007).

Kumar, K. et al., Laminar flame speeds of preheated iso-octance/O2/N2 and n-heptane/O2/N2 mixtures, J. Propulsion Power 23, (2007).

Reacting flow field initialisation:

1D steady-state laminar spray flame, COSILAB

- Generated according to the droplet diameter and overall equivalence ratio
- 1D profiles are then specified in the radial direction from the centre of the domain.

Reacting flow field initialisation:

1D steady-state laminar spray flame, COSILAB

- Generated according to the droplet diameter and overall equivalence ratio
- 1D profiles are then specified in the radial direction from the centre of the domain.

Reacting flow field initialisation:

1D steady-state laminar spray flame, COSILAB

- Generated according to the droplet diameter and overall equivalence ratio
- 1D profiles are then specified in the radial direction from the centre of the domain.

Turbulent flow field initialisation:

• Incompressible homogeneous isotropic velocity field is superimposed on the laminar spherical flames with $r_0/\delta_{st} = 2.0$

Simulation parameters

- Domain: $(84.49\delta_z)^3$ (where $\delta_z = \alpha_{T0}/S_{b(\phi_g=1)}$ is the Zel'dovich flame thickness)
- Grid number: $(512)^3$
- Initial kernel radius: $r_0/\delta_{st} = 2.0$
- Equivalence ratio: $\phi_{ov} = 0.8$, 1.0 and 1.2

$$\phi_{ov} = \phi_{gas} + \phi_{liq}$$

Equivalence ratio: $\phi = \frac{FAR}{FAR_{st}} \qquad \delta_{st} = \frac{(T_{ad}(\phi_g=1) - T_0)}{\max |\nabla T|_L}$

Simulation parameters:

- Initial rms: $u'/S_{b(\phi_g=1)} = 0.0$ and 4.0
- Longitudinal integral length-scale: $L_{11}/\delta_{st} = 2.5$
- Droplet diameter: $a_d/\delta_{st} = 0.04, 0.05$ and 0.06
- Number density: $1.28 \le (\rho_N)^{1/3} \delta_{st} \le 2.18$
- Heat release parameter: $\tau = \frac{(T_{ad}(\phi_g=1) - T_0)}{T_0} = 6.54$

Reaction progress variable, c:

$$c = \frac{(1-\xi)Y_{0\infty} - Y_0}{(1-\xi)Y_{0\infty} - \max(0, [\xi_{st} - \xi]/\xi_{st})Y_{0\infty}}$$

$$\xi = \frac{(Y_F - Y_O/s + Y_{O\infty}/s)}{(Y_{F\infty} - Y_{O\infty}/s)}$$

Results: Flame-droplet-turbulence interaction

Distribution of Y_F/Y_{st} (magenta lines show c = 0.1, 0.5, 0.9 contours from outer to inner periphery) on the central *x*-*y* mid-plane for laminar flames with $\phi_{ov} = 0.8, 1.0$ and 1.2. All figures correspond to $t = 2.52\alpha_{T0}/S_{b(\phi_g=1)}^2$

Results: Flame-droplet-turbulence interaction

 $\phi_{ov} = 0.8, 1.0 \text{ and } 1.2 \ a_d / \delta_{st} = 0.04, 0.05 \text{ and } 0.06$

Distribution of Y_F/Y_{st} (magenta lines show c = 0.1, 0.5, 0.9 contours from outer to inner periphery) on the central x-y mid-plane for turbulent flames with $\phi_{ov} = 0.8, 1.0$ and 1.2. All figures correspond to $t = 2.52\alpha_{T0}/S_{b(\phi_g=1)}^2$

Results: Droplet induced wrinkling

 $\phi_{ov} = 0.8, 1.0, 1.2$ and $a_d / \delta_{st} = 0.04, 0.05, 0.06$

Flame normal vector:

$$\vec{N} = -\nabla c / |\nabla c|$$

Local curvature:

$$\kappa_m = \nabla \cdot \vec{N}/2$$

 $\kappa_m \times \delta_{st}$ A positive curvature \longrightarrow convex to the reactants -2.0 0 A negative curvature \longrightarrow concave to the reactants

- * The droplet case with initial $a_d/\delta_{st} = 0.04$ for $\phi_{ov} = 0.8$ does not show dimples but laminar flame also does not remain spherical.
- ✤ Evaporation of clustered droplets creates large distributed dimples for the $\phi_{ov} = 1.2$ cases in contrast to small densely packed dimples in the $\phi_{ov} = 1.0$ cases.

Instantaneous view of c = 0.5 isosurface coloured with local values of $\kappa_m \times \delta_{st}^{T}$ for the cases with $\phi_{ov} = 0.8$, $\phi_{ov} = 1.0$ and $\phi_{ov} = 1.2$ at $t = 2.52\alpha_{T0}/S_{b(\phi_g=1)}^2$.

Results: PDF of gaseous equivalence ratio

* Localised fuel-rich pockets are more frequent for large droplets and $\phi_{ov} = 1.2$

Results: The evolution of flame surface area

A, flame surface area: $A = \int |\nabla c| dV$

 r_A is the equivalent radius :

$$r_A = \sqrt{A/4 \pi}$$

 S_A is a flame speed which can is defined based on based on the flame surface area.

$$S_A = d r_A / d t$$

	$\phi_{ov} = 0.8$		$\phi_{ov} = 1.0$		$\phi_{ov} = 1.2$	
a_d/δ_{st}	Laminar	$u'/S_{b(\phi_g=1)}=4$	Laminar	$u'/S_{b(\phi_g=1)}=4$	Laminar	$u'/S_{b(\phi_g=1)}=4$
0.04	3.30	3.48	5.46	7.96	6.17	10.12
0.05	3.90	5.30	4.87	6.93	5.60	8.48
0.06	4.57	5.97	4.69	6.78	5.17	7.59
Premixed	3.18	4.10	5.42	10.44	5.83	8.15

Normalised flame speed $S_A/S_{b(\phi_{ov})}$, which quantifies the growth rate of flame surface area A.

- ★ The presence of droplets enhances $S_A/S_{b(\phi_{ov})}$ for $\phi_{ov} = 0.8$ except for the initial $a_d/\delta_{st} = 0.04$.
- * For $\phi_{ov} = 1.0$ and 1.2, only the small droplets with initial $a_d/\delta_{st} = 0.04$ under laminar conditions demonstrate higher $S_A/S_{b(\phi_{ov})}$ than the corresponding laminar premixed flame.
- * $S_A/S_{b(\phi_{ov})}$ increases with increasing droplet diameter for $\phi_{ov} = 0.8$, whereas it shows just the opposite behaviour for $\phi_{ov} = 1.0$ and 1.2.

Results: The evolution of burned gas volume

	$\phi_{ov}=0.8$		$\phi_{ov} = 1.0$		$\phi_{ov} = 1.2$	
a_d/δ_{st}	Laminar	$u'/S_{b(\phi_g=1)}=4$	Laminar	$u'/S_{b(\phi_g=1)}=4$	Laminar	$u'/S_{b(\phi_g=1)}=4$
0.04	3.03	1.03	5.34	5 .70	6.43	6.63
0.05	2.97	3.45	4.90	4.34	5.81	5
0.06	4.07	2.10	4.91	3.73	5.21	4.14
Premixed	3.55	2.32	5.5	6.63	6.25	7.28

Normalised flame speed $S_{\nu}/S_{b(\phi_{o\nu})}$, which quantifies the growth rate of burned gas volume V_b .

 S_V is a flame speed which is defined based on based on the burned gas volume.

$$S_V = d r_V / d t$$

 r_V is the equivalent radius which is calculated as : $r_V = (3V_b/4\pi)^{1/3}$

- ★ The presence of droplets enhances $S_V/S_{b(\phi_{ov})}$ for $\phi_{ov} = 0.8$ with the initial $a_d/\delta_{st} = 0.06$ under laminar conditions.
- * Turbulence significantly affects $S_V/S_{b(\phi_g)}$ and increases the growth rate of burned gas volume for large droplets with $\phi_{ov} = 0.8$ and for small droplets with $\phi_{ov} = 1.0$ and 1.2.

Results: The evolution of burned gas volume

¹Comparison S_n of for gaseous and aerosol ethanol-air at various ϕ_{ov} .

Normalised flame speed $S_{\nu}/S_{b(\phi_{o\nu})}$, which quantifies the growth rate of burned gas volume V_b .

¹Saat, A.: Fundamental Studies of Combustion of Droplet and Vapour Mixtures. PhD Thesis, The University of Leeds, (2010).

Results: Mean flame speed statistics

Mean values of $S_c/S_{b(\phi_g=1)}$ and $S_d^*/S_{b(\phi_g=1)}$ on c = 0.8 isosurface along with alternative flame speeds $S_A^*/S_{b(\phi_g=1)}$ and $S_V^*/S_{b(\phi_g=1)}$. The value of $S_{b(\phi_g=\phi_{ov})}/S_{b(\phi_g=1)}$ is shown by the horizontal black dashed line.

$$S_{d} = \frac{\left[\nabla \cdot (\rho D \nabla c) + \dot{w}_{c} + \dot{S}_{c} + \dot{A}_{c}\right]}{\rho |\nabla c|}$$

density-weighted displacement speed: $S_{d}^{*} = \rho S_{d} / \rho_{0}$
consumption speed: $S_{c} = \rho_{0}^{-1} \int \dot{w} dn$
$$S_{d}^{*} = \rho_{b} S_{d} / \rho_{0}$$

16/20

Newcastle

Jniversity

Conlusions and ongoing work

- ✤ Overall equivalence ratio, droplet size and turbulence have an important influence on the flame structure.
- The presence of droplets leads to dimples on the flame surface for large droplet diameters and large droplet number densities.
- * The gaseous phase mixture within the flame is predominantly fuel-lean in comparison to the overall equivalence ratio for $\phi_{ov} = 1.0$ and 1.2 droplet cases.
- * The growth rate of flame surface area increases with increasing droplet diameter under fuel-lean mixture conditions, whereas an opposite behaviour has been observed for $\phi_{ov} = 1.0$ and 1.2.
- Displacement and consumption speeds can be related with the rates of flame area generation and the burned gas volume in spherically expanding spray flames.
 Newcastle

Conclusions and ongoing work

¹D.H. Wacks, N. Chakraborty, and E. Mastorakos, "Statistical Analysis of Turbulent Flame-Droplet Interaction: A Direct Numerical Simulation Study," Flow, Turbul. Combust. 96, 573 (2016).

²G. Ozel Erol, J.Hasslberger, M. Klein, and N. Chakraborty, "A direct numerical simulation analysis of spherically expanding turbulent flames in fuel droplet-mists for an overall equivalence ratio of unity", Physics of Fluids, 30,(2018)

Conclusions and ongoing work

Simulation Parameters

- *Domain:* $(63.3\delta_z)^3$ (where $\delta_z = \alpha_{T0}/S_{b(\phi_g=1)}$ is the Zel'dovich flame thickness)
- *Grid number*: (384)³
- Equivalence ratio: $\phi_d = 1.0$
- Initial rms: $u'/S_{b(\phi_g=1)} = 2.0$
- Longitudinal integral length-scale: $L_{11}/\delta_{th} = 2.5$
- Mean inlet velocity of $\bar{u}_{mean}/S_{b,st} = 5$.
- Holder position (x,y): $(120\Delta x, 192 \Delta y)$
- Heat release parameter: $\tau = \frac{T_{ad}(\phi_g=1)^{-T_0}}{T_0} = 6.4$
- Droplet diameter: $a_d/\delta_{th} = 0.04, 0.05$ and 0.06

Reaction progress variable isosurfaces at c = 0.1, 0.5 and 0.9 for $a_d/\delta_{th} =$ 0.06 initial droplet diameter, at t = $1.5t_{flow}$.

Journal Papers:

- 1. Ozel Erol, G., Hasslberger, J., Klein, M., Chakraborty, N., A direct numerical simulation analysis of spherically expanding turbulent flames in fuel droplet-mists for an overall equivalence ratio of unity. **Phys. Fluids.** 086104, (2018)
- 2. Ozel Erol, G., Hasslberger, J., Klein, M., Chakraborty, N., A Direct Numerical Simulation investigation of spherically expanding flames propagating in fuel droplet-mists for different droplet diameters and overall equivalence ratios. **Combust. Sci. Technol.** (printed online), (2019)

Conferences:

- Ozel Erol, G., Hasslberger, J., Klein, M., Chakraborty, N., Spherically expanding turbulent flames in fuel-droplet mists: A Direct Numerical Simulation analysis, **Turbulence, Heat and Mass Transfer 9**, Rio de Janeiro, Brazil (10.07.2018 - 13.07.2018)
- Ozel Erol, G., Hasslberger, J., Klein, M., Chakraborty, N., Evolution of Spherically Expanding Turbulent Flames in Droplet-Laden Mixtures: A Direct Numerical Simulation Analysis, 37th International Symposium on Combustion, Dublin, Ireland (29.07.2018 - 02.08.2018)

THANK YOU

The financial support of the Republic of Turkey Ministry of National Education and EPSRC (EP/K025163/1) and the computational support of Rocket and ARCHER are gratefully acknowledged.

