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1. Introduction 



https://www.youtube.com/watch?v=BzgaTDb7E88

Significant practical relevance of: 

• Internal Combustion (IC) engines

• Gas turbines 

• Industrial furnaces 

Includes the critical processes:

• evaporation of liquid droplets

• mixing of fuel vapour with the surrounding 

air

• interaction of droplets with the flame and 

flow field

Introduction: Motivation
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Introduction: Objectives
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 to demonstrate and explain the influences of droplet size

and the overall equivalence ratio on

the flame structure and wrinkling

the evolution of flame surface area and

the evolution of burned gas volume

displacement and consumption speeds

in spherically expanding laminar and turbulent n-heptane

spray flames.

 to compare the results obtained from spray flames with

the corresponding gaseous premixed flames.



Mathematical Background

Reveillon, J., Vervisch, L.: Spray vaporization in non-premixed turbulent combustion modelling: a single

droplet model. Combust. Flame 121, 75–90 (2000). 3/20

Liquid Phase:

Lagrangian Approach is used for droplets following the approach proposed by

Reveillon & Vervisch.
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𝐿𝑣 is the latent heat of vaporization

𝐵𝑑 is the Spalding mass transfer number
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is the gaseous specific heats at constant pressure

Relaxation time scales associated with droplet:

 Velocity, 𝜏𝑑
𝑢
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 Temperature, 𝜏𝑑
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Gaseous Phase:

Eulerian Approach is used to solve for gas phase combustion.

Mathematical Background
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𝑢 𝑥, 𝑦, 𝑧, 𝑡
𝑒 𝑥, 𝑦, 𝑧, 𝑡
𝑌𝐹 𝑥, 𝑦, 𝑧, 𝑡
𝑌𝑂 𝑥, 𝑦, 𝑧, 𝑡

Coupling between two phases:

𝜕𝜌𝜓

𝜕𝑡
+
𝜕𝜌𝑢𝑗𝜓

𝜕𝑥𝑗
=

𝜕

𝜕𝑥𝑗
Γ𝜓

𝜕𝜓1

𝜕𝑥𝑗
+  𝑤𝜓 +  𝑆𝑔 +  𝑆𝜓

𝜓1 = {1, 𝑢𝑗 ,  𝑇, 𝑌𝐹 , 𝑌𝑂} for 𝜓 = {1, 𝑢𝑗 , 𝑒, 𝑌𝐹 , 𝑌𝑂}

Γ𝜓 = 𝜌𝜈/𝜎𝜓 for 𝜓 = {1, 𝑢𝑗 , 𝑌𝐹 , 𝑌𝑂} and Γ𝜓 = 𝜆 for 𝜓 = 𝑒

 𝑤𝜓 is chemical reaction rate,

 𝑆𝑔 is an appropriate source/sink term and

 𝑆𝜓 is source term due to droplet evaporation, which is tri-linearly interpolated from the

droplet’s sub-grid position, 𝑥𝑑, to the eight surrounding nodes.



Code:

3D,compressible DNS code, SENGA+

• 10th order central difference scheme

• Time advancement: Explicit low-storage 3rd order Runge-Kutta scheme.

• A modified single-step Arrhenius-type irreversible chemical reaction:

• Droplets are treated as sub-grid point sources.

Mathematical Background
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Chaos, M. et al.,A high‐temperature chemical kinetic model for primary reference fuels. Int. J. Chem. Kinet. 39, (2007).

Kumar, K. et al., Laminar flame speeds of preheated iso-octance/O2/N2 and n-heptane/O2/N2 mixtures, J. Propulsion Power 23, (2007).

Variation of the (a) normalised laminar burning velocity 𝑆𝑏 𝜙𝑔
/ 𝑆𝑏 𝜙𝑔 𝑚𝑎𝑥

and (b) normalised adiabatic flame temperature 𝑇𝑏(𝜙𝑔) =

(𝑇𝑎𝑑 𝜙𝑔
− 𝑇0)/(𝑇𝑎𝑑 𝜙𝑔=1

− 𝑇0) with equivalence ratio 𝜙𝑔 for n-heptane obtained from modified single step chemistry (Tarrazo et al., 2006),

detailed chemical mechanism (Chaos et al., 2007) and experimental (Kumar et al., 2007) data.



Reacting flow field initialisation:

1D steady-state laminar spray flame, COSILAB

• Generated according to the droplet diameter and overall

equivalence ratio

• 1D profiles are then specified in the radial

direction from the centre of the domain.

Mathematical Background
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Reacting flow field initialisation:

1D steady-state laminar spray flame, COSILAB

• Generated according to the droplet diameter and overall

equivalence ratio

z
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• 1D profiles are then specified in the radial

direction from the centre of the domain.

Mathematical Background
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𝑟0



Reacting flow field initialisation:

1D steady-state laminar spray flame, COSILAB

• Generated according to the droplet diameter and overall

equivalence ratio

 𝒓𝟎 𝜹𝒔𝒕 = 𝟐 z

x

y

𝑟0

• 1D profiles are then specified in the radial

direction from the centre of the domain.

Turbulent flow field initialisation:

• Incompressible homogeneous isotropic

velocity field is superimposed on the laminar

spherical flames with  𝑟0 𝛿𝑠𝑡 = 2.0

Mathematical Background

6/20



Simulation parameters

• Domain: (84.49δz)
3 (where δz = αT0/Sb(ϕg=1) is the

Zel’dovich flame thickness)

• Grid number: (512)3

• Initial kernel radius:  𝑟0 𝛿𝑠𝑡 = 2.0
• Equivalence ratio: 𝜙𝑜𝑣 = 0.8, 1.0 and 1.2

𝜙𝑜𝑣 = 𝜙𝑔𝑎𝑠+𝜙𝑙𝑖𝑞

Equivalence ratio:

𝜙 =
𝐹𝐴𝑅

𝐹𝐴𝑅𝑠𝑡

𝛿𝑠𝑡 =
(𝑇𝑎𝑑 𝜙𝑔=1

− 𝑇0)

max| 𝛻𝑇|𝐿

Mathematical Background
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Simulation parameters:

• Initial rms:  𝑢′ 𝑆𝑏 𝜙𝑔=1
= 0.0 𝑎𝑛𝑑 4.0

• Longitudinal integral length-scale:  𝐿11 𝛿𝑠𝑡 = 2.5
• Droplet diameter:  𝑎𝑑 𝛿𝑠𝑡 = 0.04, 0.05 and 0.06

• Number density: 1.28 ≤ 𝜌𝑁
 1 3𝛿𝑠𝑡 ≤ 2.18

• Heat release parameter:

𝜏 =
(𝑇𝑎𝑑(𝜙𝑔=1)−𝑇0)

𝑇0
= 6.54

𝜉 =
(𝑌𝐹 − 𝑌𝑂/𝑠 + 𝑌𝑂∞/𝑠)

(𝑌𝐹∞−𝑌𝑂∞/𝑠)

𝑐 =
1 − 𝜉 𝑌𝑂∞ − 𝑌𝑂

1 − 𝜉 𝑌𝑂∞ −max( 0, [𝜉𝑠𝑡 − 𝜉  ] 𝜉𝑠𝑡)𝑌𝑂∞

Mathematical Background

8/20

Reaction progress variable, c:



Results: Flame-droplet-turbulence interaction
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𝜙𝑜𝑣 = 0.8,1.0 and 1.12  𝑎𝑑 𝛿𝑠𝑡 = 0.04, 0.05 and 0.06

𝑥/𝛿𝑧

𝑳
𝒂
𝒎
𝒊𝒏
𝒂
𝒓

𝜙
𝑜
𝑣
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𝑜
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𝑜
𝑣
=
1
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𝑥/𝛿𝑧 𝑥/𝛿𝑧𝑥/𝛿𝑧

𝑃𝑟𝑒𝑚𝑖𝑥𝑒𝑑  𝑎𝑑 𝛿𝑠𝑡 = 0.04  𝑎𝑑 𝛿𝑠𝑡 = 0.05  𝑎𝑑 𝛿𝑠𝑡 = 0.06

Distribution of 𝑌𝐹/𝑌𝑠𝑡 (magenta lines show 𝑐 = 0.1,0.5,0.9 contours from outer to inner periphery) on the

central x-y mid-plane for laminar flames with 𝜙𝑜𝑣 = 0.8, 1.0 and 1.2. All figures correspond to 𝑡 =
2.52𝛼𝑇0/𝑆𝑏(𝜙𝑔=1)

2



Results: Flame-droplet-turbulence interaction
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𝜙𝑜𝑣 = 0.8,1.0 and 1.2  𝑎𝑑 𝛿𝑠𝑡 = 0.04, 0.05 and 0.06

𝑥/𝛿𝑧
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𝑥/𝛿𝑧 𝑥/𝛿𝑧𝑥/𝛿𝑧

𝑃𝑟𝑒𝑚𝑖𝑥𝑒𝑑  𝑎𝑑 𝛿𝑠𝑡 = 0.04  𝑎𝑑 𝛿𝑠𝑡 = 0.05  𝑎𝑑 𝛿𝑠𝑡 = 0.06

Distribution of 𝑌𝐹/𝑌𝑠𝑡 (magenta lines show 𝑐 = 0.1,0.5,0.9 contours from outer to inner periphery) on the central x-y mid-plane for turbulent

flames with 𝜙𝑜𝑣 = 0.8, 1.0 and 1.2. All figures correspond to 𝑡 = 2.52𝛼𝑇0/𝑆𝑏(𝜙𝑔=1)
2

Unburned fuel

pockets 



Results: Droplet induced wrinkling
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Instantaneous view of 𝑐 = 0.5 isosurface coloured with local values of 𝜅𝑚 × 𝛿𝑠𝑡
for the cases with 𝜙𝑜𝑣 = 0.8, 𝜙𝑜𝑣= 1.0 and 𝜙𝑜𝑣 = 1.2 at 𝑡 = 2.52𝛼𝑇0/𝑆𝑏(𝜙𝑔=1)

2 .

𝜙𝑜𝑣 = 0.8,1.0,1.2 and  𝑎𝑑 𝛿𝑠𝑡 = 0.04, 0.05,0.06

𝑁 = −𝛻𝑐/|𝛻𝑐|

𝜅𝑚 = 𝛻 ∙ 𝑁/2

Flame normal vector:

Local curvature: 

A positive curvature convex to the reactants 

A negative curvature concave to the reactants 

 The droplet case with initial  𝑎𝑑 𝛿𝑠𝑡 = 0.04
for 𝜙𝑜𝑣 = 0.8 does not show dimples but

laminar flame also does not remain

spherical.

 Evaporation of clustered droplets creates

large distributed dimples for the 𝜙𝑜𝑣 = 1.2
cases in contrast to small densely packed

dimples in the 𝜙𝑜𝑣 = 1.0 cases.



Results: PDF of gaseous equivalence ratio

𝜙𝑜𝑣 = 0.8,1.0 and 1.2  𝑎𝑑 𝛿𝑠𝑡 = 0.04, 0.05 and 0.06

𝜙𝑜𝑣 = 0.8

𝑃𝑟𝑒𝑚𝑖𝑥𝑒𝑑 𝐺𝑎𝑠

𝜙𝑜𝑣 = 1.0 𝜙𝑜𝑣 = 1.2 𝜙𝑜𝑣 = 0.8

𝐷𝑟𝑜𝑝𝑙𝑒𝑡 𝐶𝑎𝑠𝑒𝑠

𝜙𝑜𝑣 = 1.0 𝜙𝑜𝑣 = 1.2

PDF of 𝜙𝑔 in the region corresponding to 0.01 ≤ 𝑐 ≤ 0.99;

 A peak of the 𝜙𝑔 -PDF at

𝜙𝑔 ≈ 𝜙𝑜𝑣

 The probability of finding

𝜙𝑔 < 𝜙𝑜𝑣 supersedes the

availability of 𝜙𝑔 > 𝜙𝑜𝑣

 Localised fuel-rich pockets are more frequent for large droplets and 𝜙𝑜𝑣 = 1.2

12/20



Results: The evolution of flame surface area

𝑆𝐴 is a flame speed which can is defined 

based on  based on the flame surface area. 

𝑆𝐴 = 𝑑  𝑟𝐴 𝑑 𝑡𝑟𝐴 is the equivalent radius : 𝑟𝐴 =  𝐴 4𝜋

13/20

𝐴 =  |𝛻𝑐|𝑑𝑉A, flame surface area:

𝜙𝑜𝑣 = 0.8 𝜙𝑜𝑣 = 1.0 𝜙𝑜𝑣 = 1.2

𝑎𝑑/𝛿𝑠𝑡 Laminar 𝑢′/𝑆𝑏(𝜙𝑔=1) = 4 Laminar 𝑢′/𝑆𝑏(𝜙𝑔=1) = 4 Laminar 𝑢′/𝑆𝑏(𝜙𝑔=1) = 4

0.04 3.30 3.48 5.46 7.96 6.17 10.12

0.05 3.90 5.30 4.87 6.93 5.60 8.48

0.06 4.57 5.97 4.69 6.78 5.17 7.59

Premixed 3.18 4.10 5.42 10.44 5.83 8.15

 The presence of droplets enhances 𝑆𝐴/𝑆𝑏(𝜙𝑜𝑣) for 𝜙𝑜𝑣 = 0.8 except for the initial 𝑎𝑑/𝛿𝑠𝑡 =

0.04.

 𝑆𝐴/𝑆𝑏(𝜙𝑜𝑣) increases with increasing droplet diameter for 𝜙𝑜𝑣 = 0.8, whereas it shows just

the opposite behaviour for 𝜙𝑜𝑣 = 1.0 and 1.2.

Normalised flame speed 𝑆𝐴/𝑆𝑏(𝜙𝑜𝑣), which quantifies the growth rate of flame surface area A.

 For 𝜙𝑜𝑣 = 1.0 and 1.2, only the small droplets with initial 𝑎𝑑/𝛿𝑠𝑡 = 0.04 under laminar

conditions demonstrate higher 𝑆𝐴/𝑆𝑏(𝜙𝑜𝑣) than the corresponding laminar premixed flame.



Results: The evolution of burned gas volume 

𝜙𝑜𝑣 = 0.8 𝜙𝑜𝑣 = 1.0 𝜙𝑜𝑣 = 1.2

𝑎𝑑/𝛿𝑠𝑡 Laminar 𝑢′/𝑆𝑏(𝜙𝑔=1) = 4 Laminar 𝑢′/𝑆𝑏(𝜙𝑔=1) = 4 Laminar 𝑢′/𝑆𝑏(𝜙𝑔=1) = 4

0.04 3.03 1.03 5.34 5.70 6.43 6.63

0.05 2.97 3.45 4.90 4.34 5.81 5

0.06 4.07 2.10 4.91 3.73 5.21 4.14

Premixed 3.55 2.32 5.5 6.63 6.25 7.28

Normalised flame speed 𝑆𝑣/𝑆𝑏(𝜙𝑜𝑣), which quantifies the growth rate of burned gas volume 𝑉𝑏.

 The presence of droplets enhances 𝑆𝑉/𝑆𝑏(𝜙𝑜𝑣) for 𝜙𝑜𝑣 = 0.8 with the initial 𝑎𝑑/𝛿𝑠𝑡 = 0.06

under laminar conditions .

𝑆𝑉 is a flame speed which is defined based on  based on the burned gas volume. 

𝑆𝑉 = 𝑑  𝑟𝑉 𝑑 𝑡

𝑟𝑉 is the equivalent radius which is calculated as : 𝑟𝑉 = 3𝑉𝑏/4𝜋
1/3

 Turbulence significantly affects 𝑆𝑉/𝑆𝑏(𝜙𝑔) and increases the growth rate of burned gas

volume for large droplets with 𝜙𝑜𝑣 = 0.8 and for small droplets with 𝜙𝑜𝑣 = 1.0 and 1.2.

14/20



𝑆𝑛 =  𝑑𝑟 𝑑𝑡

1.3

1.8

2.3

2.8

3.3

0.75 0.85 0.95 1.05 1.15 1.25

Gaseous

𝑎𝑑 =12 𝜇𝑚

𝑎𝑑 =23 𝜇𝑚

𝑎𝑑 =31 𝜇𝑚

𝑆 𝑛
(m

/s
)

𝜙𝑜𝑣

1Comparison 𝑆𝑛 of for gaseous and aerosol ethanol-air at various 𝜙𝑜𝑣.

Results: The evolution of burned gas volume 

1Saat, A.: Fundamental Studies of Combustion of Droplet and Vapour Mixtures. PhD Thesis, The 

University of Leeds, (2010).

2.5

3.5

4.5

5.5

6.5

0.75 0.85 0.95 1.05 1.15 1.25

𝜙𝑜𝑣

𝑆 𝑣
/𝑆

𝑏
(𝜙

𝑜
𝑣
)

Normalised flame speed 𝑆𝑣/𝑆𝑏(𝜙𝑜𝑣), which quantifies the growth

rate of burned gas volume 𝑉𝑏.

𝑆𝑉 = 𝑑  𝑟𝑉 𝑑 𝑡

𝑟𝑉 = 3𝑉𝑏/4𝜋
1/3

Gaseous

𝑎𝑑/𝛿𝑠𝑡 = 0.04

𝑎𝑑/𝛿𝑠𝑡 = 0.05

𝑎𝑑/𝛿𝑠𝑡 = 0.06

Experiment DNS

𝑳𝒂𝒎𝒊𝒏𝒂𝒓

15/20



Results: Mean flame speed statistics 

𝑆𝐴
∗ = 𝜌𝑏  𝑆𝐴 𝜌0

𝑆𝑐 = 𝜌0
−1  𝑤𝑑𝑛

𝑆𝑑 =
𝛻 ∙ 𝜌𝐷𝛻𝑐 +  𝑤𝑐 +  𝑆𝑐 +  𝐴𝑐

𝜌|𝛻𝑐|

Mean values of 𝑆𝑐/𝑆𝑏 𝜙𝑔=1
and 𝑆𝑑

∗/𝑆𝑏 𝜙𝑔=1
on 𝑐 = 0.8 isosurface along with alternative flame speeds 𝑆𝐴

∗/𝑆𝑏 𝜙𝑔=1
and 𝑆𝑉

∗/𝑆𝑏 𝜙𝑔=1
. The

value of 𝑆𝑏 𝜙𝑔=𝜙𝑜𝑣
/𝑆𝑏 𝜙𝑔=1

is shown by the horizontal black dashed line.

16/20

𝑆𝑑
∗ = 𝜌  𝑆𝑑 𝜌0

𝑆𝑉
∗ = 𝜌𝑏  𝑆𝑉 𝜌0

density-weighted displacement speed:

consumption speed:

 
𝒖
′
𝑺
𝒃
𝝓
𝒈
=
𝟏
=
𝟒
.𝟎



Conlusions and ongoing work

 Overall equivalence ratio, droplet size and turbulence have an important

influence on the flame structure.

 The presence of droplets leads to dimples on the flame surface for large droplet

diameters and large droplet number densities.

 The gaseous phase mixture within the flame is predominantly fuel-lean in

comparison to the overall equivalence ratio for 𝜙𝑜𝑣 = 1.0 and 1.2 droplet cases.

 The growth rate of flame surface area increases with increasing droplet

diameter under fuel-lean mixture conditions, whereas an opposite behaviour has

been observed for 𝜙𝑜𝑣 = 1.0 and 1.2.

 Displacement and consumption speeds can be related with the rates of flame

area generation and the burned gas volume in spherically expanding spray

flames.

17/20



 
𝒂
𝒅
𝜹
𝒕𝒉
=
𝟎
.𝟎
𝟔

𝒄

𝑷𝒍𝒂𝒏𝒂𝒓 𝑺𝒑𝒓𝒂𝒚 𝑭𝒍𝒂𝒎𝒆1

𝑺𝒑𝒉𝒆𝒓𝒊𝒄𝒂𝒍 𝑬𝒙𝒑𝒂𝒏𝒅𝒊𝒏𝒈
𝑺𝒑𝒓𝒂𝒚 𝑭𝒍𝒂𝒎𝒆𝟐

 
𝒂
𝒅
𝜹
𝒕𝒉
=
𝟎
.𝟎
𝟔

𝒄

1D.H. Wacks, N. Chakraborty, and E. Mastorakos, “Statistical Analysis of Turbulent Flame-Droplet Interaction: A Direct Numerical Simulation Study,” Flow, Turbul. Combust.
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Simulation Parameters

• Domain: (63.3𝛿𝑧)
3 (where 𝛿𝑧 = 𝛼𝑇0/𝑆𝑏(𝜙𝑔=1) is the

Zel’dovich flame thickness)

• Grid number: (384)3

• Equivalence ratio: 𝜙𝑑 = 1.0
• Initial rms:  𝑢′ 𝑆𝑏 𝜙𝑔=1

= 2.0

• Longitudinal integral length-scale:  𝐿11 𝛿𝑡ℎ = 2.5
• Mean inlet velocity of   𝑢𝑚𝑒𝑎𝑛 𝑆𝑏,𝑠𝑡 = 5.

• Holder position (x,y): (120∆𝑥, 192 ∆𝑦)

• Heat release parameter: 𝜏 =
𝑇𝑎𝑑 𝜙𝑔=1

−𝑇0

𝑇0
= 6.4

• Droplet diameter:  𝑎𝑑 𝛿𝑡ℎ = 0.04,0.05 and 0.06 Reaction progress variable isosurfaces

at 𝑐 =0.1, 0.5 and 0.9 for 𝑎𝑑/𝛿𝑡ℎ =
0.06 initial droplet diameter, at 𝑡 =
1.5𝑡𝑓𝑙𝑜𝑤 .

z
y

x
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