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Introducing laminar burning velocity

Experimental values of burning velocities are required:

- To help kineticists and modellers validate their schemes and
models

- To provide input for models of flashback, minimum ignition
energy and turbulent combustion

Laminar burning velocity is dependent upon:
- The equivalence ratio of the fuel/air mixture
- Pressure of the mixture
- Temperature of the mixture

- Residuals
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Measuring laminar burning velocity

The constant volume vessel is a versatile and accurate
method of determining laminar burning velocities

- Allows two different techniques:
- flame front imaging using optical access and

- analysis of vessel pressure during combustion

- Generates burning velocities as a function of temperature and

pressure from a single experiment over a wide range of
pressures and temperatures

- Flame stretch conditions are well defined
- Uses small quantities of fuel

- Data have been obtained for many gases and liquid fuels and
their mixtures
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Introducing laminar burning velocity

Definition of laminar burning velocity:

- The velocity at which a flame front moves, relative to the
velocity of the gas into which it is propagating

- Applies to the case of a 1-D flat (un-stretched) flame

Flame
front
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How is Laminar Burning Velocity Measured?

Open Systems = Closed Systems
= Conical flames = Spherical Vessels
- Flat flames = Cylindrical Vessels

= Stagnation flames
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Constant Volume (CV) Measurement Methods

= Measurement Methods
= Image the flame front before there is significant change in pressure,
= Use the pressure rise and a thermodynamic analysis

= Oxford Innovations
= Zero Gravity — Andy Clarke
= Multi-zone thermodynamic analysis — Khizer Saeed
= Real Residuals — Steve Marshall
= Reconciliation of both CV methods — Nathan Hinton

Acknowledegements to support from: BP, British Gas, Shell and EPSRC
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maximum speed of fall: 168 km/h

maximum weight of experiment

capsule: 500 ky

vacuum: 18 pumps draw out

1700 m3 ofairinl.5t02 h

air pressure after evacuation:
10 Pa (0.0001 bar)




Oxford Zero Gravity Experiments
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Multi-Zone Modelling of the Burned Gas
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Buming Velocity (cm sgl)
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Real Residuals

Metghalchi and Keck pioneered
the use of a N2/CO2 mixture to
represent combustion residuals

 But what about rich mixtures

with CO and H2 present?
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Constant Volume Vessel Methods
Reconciliation; Lambda Sensor Challenge
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Combustion Bomb
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Experimental setup

Combustion bomb in temperature
regulated chamber

Air heater

Needle valve
controlling flow
of exhaust to
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Mass flow
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Flame stretch

= Definition of laminar burning velocity is based upon a 1-D flame
with parallel velocity components

= QOutwardly propagating spherical flames are stretched due to:
= Curvature, causing the velocity components to diverge

= Strain, due to the increasing size of an elemental area of the
surface as the flame propagates

= Overall stretch rate for a spherically expanding flame is given by:

a = T f
= Stretch can either increase or decrease the burning velocity of a
mixture, so its effect is important when considering early flame

propagation and turbulent combustion
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Determining Burning Velocity from
Schlieren Images - 1/2

Flame speed can be deduced from the Schlieren images of flame front
propagation.

Spherically expanding flames are initially highly stretched, so un-stretched
flame speed is obtained by extrapolating back to of zero stretch:

SS _Sf =Lbaf

» For the case of no pressure rise, flame speed is related to burning velocity
by the ratio of burned and unburned gas density:

Pb
Su — Ssa

& SEsho EPSRC 2




Determining Burning Velocity from
Schlieren Images - 2/2
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Burning velocity (cm/s)
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Flame Front Imaging Data at 450 K
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Cellularity

Flame fronts of some mixtures become
cellular at certain conditions

= Strongly influenced by the Lewis
number of the mixture

= Causes a significant increase In
the flame propagation due to
Increased surface area

= Onset of cellularity violates :L\:;!: ____ e
assumptions of a smooth flame Y e S
front and stretch T
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Correlation of the Data

Correlation fitting routine produces a correlation from the data derived from the
pressure record in the form:

Su=[Suo+Su1(@—1) +Su2(p— 1>+ Sy 3(p— 1)° + Sya(p — D*] x 7 PP

: T P
Where: __u . p__u
T 298’ P

1.
n=no+@—mn; B=p+@—1p

Correlations can then be plotted for desired conditions of P and T within the
range for which data was fitted.
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Burning velocity (cm/s)
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Flame Front Imaging Data at 450 K

= Ethanol/Water mixtures
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Conclusions

- Good agreement between the constant
pressure and constant volume methods

- Unlike some researchers

Laminar burning velocity measurements at pressures up to
30 bar and temperatures up to 800 K.

Effects of stretch measured at pressures up to 4 bar and
temperatures up to 450 K.

Data obtained for methane, butane, propylene, biogas,
pentane, heptane, toluene, iso-octane, ethyl-benzene,
methanol, ethanol, agueous ethanol.
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Any questions?
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