SPH Capabilities in LS-DYNA

Laura Rovira Crespo, Arup

Wednesday, 10 July 2019 SPH and Industry Event

Outline

Arup – LS-DYNA

LS-DYNA

- Capabilities
- Applications

SPH in LS-DYNA

- Capabilities
- Applications

Arup – LS-DYNA

0

Our firm

Arup is an independent firm of designers, planners, engineers, architects, consultants and technical specialists, working across every aspect of today's built environment. Together we help our clients solve their most complex challenges - turning exciting ideas into tangible reality as we strive to find a better way and shape a better world.

LS-DYNA

LS-DYNA®, developed by Livermore Software Technology Corporation (LSTC), is a general-purpose finite element program capable of simulating complex real world problems. It is used by the automobile, aerospace, construction, military, manufacturing, and bioengineering industries.

Arup – LS-DYNA

The code's origins lie in highly **nonlinear**, **transient dynamic** finite element analysis using explicit time integration.

"Nonlinear" means at least one (and sometimes all) of the following complications:

- Changing boundary conditions
- Large deformations
- Nonlinear materials that do not exhibit ideally elastic behaviour

"Transient dynamic" means analysing high speed, short duration events where inertial forces are important. Typical uses include:

- Automotive crash
- Explosions
- Manufacturing.

LS-DYNA® is a multi-purpose explicit and implicit finite element and multiphysics solver used to analyse the nonlinear (and linear) response of structures.

LS-DYNA Capabilities

LS-DYNA's analysis capabilities include:

- Full 2D & 3D capabilities
- Nonlinear dynamics
- Linear statics
- Rigid body dynamics
- Quasi-static simulations
- Normal modes
- Thermal analysis
- Eulerian capabilities
- ALE (Arbitrary Lagrangian-Eulerian)
- Fluid analysis
- FSI
- Navier-Stokes fluids
- Compressible fluid solver, CESE
- FEM-rigid multi-body dynamics coupling

- Underwater shock
- Failure analysis
- Crack propagation
- Real-time acoustics
- Implicit springback
- Multi-physics coupling
- Structural-thermal coupling
- Adaptive remeshing
- SPH
- EFG
- Radiation transport
- EM (Electromagnetism)

In a given simulation, any of LS-DYNA's many features can be combined to model a wide range of physical events.

LS-DYNA's potential applications are numerous and can be tailored to many fields.

In a given simulation, any of LS-DYNA's many features can be combined to model a wide range of physical events.

LS-DYNA's potential applications are numerous and can be tailored to many fields.

FEA, Seismic Analysis – La Sagrada Familia, Mary Tower

In a given simulation, any of LS-DYNA's many features can be combined to model a wide range of physical events.

LS-DYNA's potential applications are numerous and can be tailored to many fields.

EM – Tube Expansion due to induced currents

FEA, Implicit – Roof Crush

In a given simulation, any of LS-DYNA's many features can be combined to model a wide range of physical events.

LS-DYNA's potential applications are numerous and can be tailored to many fields.

FEA, Crashworthiness – EuroNCAP testing

FEA, Impact Analysis - Fan Blade Off

The SPH module in LS-DYNA is integrated with the full range of LS-DYNA's powerful analysis tools.

This enables you to understand and explore the reaction of the structure as well as the flow within one code and one analysis.

SPH definition follows same structure as any other feature in LS-DYNA:

Define mass or volume of the particle

Parameters to stablish smoothing length

*SECTION *SECTION_SPH									
*SECTION_SPH_{OPTION}									
Card 1	1	2	3	4	5	6	7	8	
Variable	SECID	CSLH HMIN HMAX SPHINI DEATH START					START	SPHKERN	
Туре	٧A	F	F	F	F	F	F	I	
Default	none	1.2	0.2	2.0	0.0	1.e20	0.0	0	
VARIABL	VARIABLE DESCRIPTION								
SECID		Section ID. SECID is referenced on the *PART card. A unique number or label must be specified.							
CSLH		Constant used to calculate the initial smoothing length of the particles. The default value works for most problems. Values between 1.05 and 1.3 are acceptable. Taking a value less than 1 is inadmissible. Values larger than 1.3 will increase the computational time. The default value is recommended. See Remark 1.							
HMIN		Scale factor for the minimum smoothing length. See Remark 1.							
HMAX		Scale factor for the maximum smoothing length. See Remark 1.							
SPHINI		Optional initial smoothing length (overrides true smoothing length). With this option LS-DYNA will not calculate the smoothing length during initialization, and the field CSLH is ignored.							
DEATH		Time imposed SPH approximation is stopped.							
START		Time imposed SPH approximation is activated.							
SPHKERN		Option for SPH kernel functions (smoothing functions):							
EQ.0: Cubic spline kernel function (default).									
EQ.1: Quintic spline kernel function: higher order smoothing function with bigger support size (recommend to use HIMAX = 3.0 or bigger value, only available for FORM = 0, 1, 9 and 10).									

LS-DYNA SPH Capabilities

SPH is implemented in 3D, 2D plane strain and 2D axisymmetric formulations.

Slide 14

SPH Capabilities in LS-DYNA

*CONTROL

*CONTROL_SPH

*CONTROL_SPH

Card 1	1	2	3	4	5	6	7	8	
Variable	NCBS	BOXID	DT	IDIM	MEMORY	FORM	START	MAXV	
Туре	I.	I.	F	I	I.	I.	F	F	
Default	1	0	1020	none	150	0	0.0	1015	
		DESCRIPTION							
NCBS		Number of time steps between particle sorting.							
BOXID		SPH approximations are computed inside a specified BOX. When a particle has gone outside the BOX, it is deactivated. This will save computational time by eliminating particles that no longer interact with the structure.							
DT		Death tir	ne. Deter	ne. Determines when the SPH calculations are stopped.					
IDIM Space dimension for SPH particles: EQ.3: for 3D problems EQ.2: for 2D plane strain problems EQ2: for 2D plane strain problems (see Remark 2)									
MEMORY Defines the initial number of neighbors below).				s per par	ticle (see I	lemark 1			
FORM	FORM Particle approximation theory (Remark 2): EQ.0: default formulation EQ.1: renormalization approximation EQ.2: symmetric formulation EQ.3: symmetric renormalized approximation EQ.4: tensor formulation EQ.5: fluid particle approximation EQ.6: fluid particle approximation EQ.7: total Lagrangian formulation with renormalization EQ.8: total Lagrangian formulation (ASPH) with anisis smoothing tensor (Remark 2, (g)) EQ.10: renormalization approximation for adaptive formulation (ASPH) with anisotropic smoothing tensor (Remark 2, (g)) EQ.10: renormalization approximation for adaptive formulation (ASPH) with anisotropic smoothing tensor (Remark 2, (g))					on ion ve SPH g tensor rk 2, (e)) on			
STAR	Г	Start time for particle approximation. Particle approximations will be computed when time of the analysis has reached the value defined in START.							
MAXV Maximum value for velocity for the SPH particles. Particles a velocity greater than MAXV are deactivated. A negative M will turn off the velocity checking.					cles with e MAXV				

LS-DYNA SPH Capabilities

Many **different particle approximation theories** available, to pick depending on the application:

- For most <u>solid structure applications</u>, FORM=1 is recommended (more accurate results around BC).
- For <u>fluid material applications</u>, use FORM=15/16 is. These include a smoothing of the pressure field and are not recommended for materials with failure or with important strain localizations.
- For <u>large or extremely large deformation applications</u>, FORM=0-6,15 and 16 (Eulerian kernel) can be used.
- Lagrangian kernel formulation (FORM = 7 or 8) can be used to avoid tensile instability issue but they cannot endure very large deformations.
- For improved accuracy and tensile stability, FORM=12 is available, based on moving least-squares. It handles extremely large deformations, but entails large computational cost.
- Only formulations 0, 1, 15 and 16 are implemented for <u>2D</u> <u>axisymmetric problems (IDIM = -2)</u>.
- FORM = 9, 10 are <u>adaptive smoothed particle hydrodynamics</u> formulation.

SPH Capabilities in LS-DYNA

*CONTROL

*CONTROL_SPH

*CONTROL_SPH

Purpose: Provide controls relating to SPH (Smooth Particle Hydrodynamics).

Card 1	1	2	3	4	5	6	7	8	
Variable	NCBS	BOXID	DT	IDIM	MEMOR	FORM	START	MAXV	
Туре	T	T	F	I	1	T	F	F	
Default	1	0	1020	none	150	0	0.0	1015	
VARIABLE DESCRIPTION									
NCBS		Number of time steps between particle sorting.							
BOXIE)	SPH approximations are computed inside a specified BOX. W a particle has gone outside the BOX, it is deactivated. This save computational time by eliminating particles that no lo interact with the structure.						(. When This will o longer	
DI		Death tir	ne. Deter	mines wh	en the SPF	l calculati	ons are st	opped.	
IDIM		Space di	mension f	or SPH pa	rticles:				
EQ.3: for 3D problems									
	EQ.2: for 2D plane strain problems								
		EQ2:	for 2D ax	isymmeti	ic problen	ns (see Ke	mark 2)		
MEMOR	RY	Defines the initial number of neighbors per particle (see Remark below).						lemark 1	
FORM	[Particle a	pproxima	ation theo	r <mark>y (R</mark> emarl	k 2):			
EQ.0: default formulation									
		EQ.1: renormalization approximation							
		EQ.2: symmetric formulation							
		EQ.3: symmetric renormalized approximation							
		EQ.4: tensor formulation							
		EQ.5: fluid particle approximation							
		EQ.6: fluid particle with renormalization approximation							
		EQ.7: total Lagrangian formulation							
		EQ.8: total Lagrangian formulation with renormalization							
		EQ.9: adaptive SPH formulation (ASPH) with anisotropic smoothing tensor (Remark 2, (g))							
		EQ.10: renormalization approximation for adaptive SPH formulation (ASPH) with anisotropic smoothing tensor							
		EQ.12: moving least-squares based formulation (Remark 2, (e))							
		EQ.15: enhanced fluid formulation							
		EQ.16	enhance	d fluid for	mulation	with reno	rmalizatio	n	
START	г	Start tim	e for par	ticle ann	oximation	Partic	e approx	imations	

Start time for particle approximation. Particle approximations will be computed when time of the analysis has reached the value defined in START.

MAXV Maximum value for velocity for the SPH particles. Particles with a velocity greater than MAXV are deactivated. A negative MAXV will turn off the velocity checking.

In LS-DYNA, SPH is usually used for:

- Applications with large material distortion
- Modelling material that decomposes into many small fragments
- Moving boundaries and free surfaces

Common Applications:

- Bird strike
- Sloshing and splashing
- Material testing analysis
- Fluid / structure interaction
- Fragmentation and spalling
- Forging and extrusion
- Metal cutting and forming
- Soil penetration
- High velocity impacts

- Wave impact studies
- Incompressible flows
- Underwater impacts
- Automotive including:
 - Fuel tank sloshing
 - Sand dune impact
 - Soil-tyre interaction
 - Wheel aquaplaning

SPH Capabilities in LS-DYNA

Bird Strike into aircraft wing:

SPH Capabilities in LS-DYNA

.000000000

SPH Capabilities in LS-DYNA

Earth Moving - Excavator:

D3PLOT: LS-DYNA keyword deck by LS-PrePost

.000000000

Modelling penetration of foundation structures (buildings) into soil:

SPH Capabilities in LS-DYNA

Torsion Test:

0.000040

SPH Capabilities in LS-DYNA

Oasys Ltd

ARUP

www.arup.com/dyna

For more information please contact the following:

UK Contact:	China Contact:	India Contact	USA West Contact
The Arup Campus	Arup China	Arup India	Arup Americas
Blythe Valley Park	39/F-41/F Huaihai Plaza	Ananth Info Park, HiTec City	c/o 560 Mission Street Suite 700
Solihull	1045 Huaihai Road (M)	Madhapur Phase-II	San Francisco
B90 8AE	Xuhui District, Shanghai	Hyderabad	CA 94105
United Kingdom	200031	500 081, Telangana	United States
	China	India	

Slide 23

T +44 (0)121 213 3399 dyna.support@arup.com T +86 21 6126 2875 china.support@arup.com T +91 (0) 40 44369797 / 8 india.support@arup.com T +1 415 940 0959 us.support@arup.com

