

Current Topics in Pressurized Combustion at Cardiff University's Gas Turbine Research Centre

Dr. Jon Runyon, PhD Research Associate Cardiff University School of Engineering

26th March, 2018 UK Fluids Network SIG Combustion Meeting

The GTRC – Who Are We?

- Large-scale, off-site experimental combustion facility located in Port Talbot, Wales opened in 2007
- Academic Staff:
 - Prof. Phil Bowen
 - Dr. Richard Marsh
 - Dr. Andrew Crayford
 - Dr. Agustin Valera-Medina
 - Prof. Nick Syred
- Research Staff:
 - Dr. Daniel Pugh (Research Fellow)
 - Dr. Anthony Giles (RA)
 - Dr. Burak Goktepe (RA)
 - Dr. Santhosh Rudrasetty (RA)
 - Dr. Jon Runyon (RA)
 - Mr. Steven Morris (GTRC Manager)
- Technical/Support Staff:
 - Ms. Gina Goddard-Bell
 - Mr. Jack Thomas
 - Mr. Terry Treherne

The GTRC - Areas of Study

- Fundamental flame studies
 - Constant Volume Combustion Bomb (CVCB)
 - High–Pressure Counter Flow Burner (HPCFB) Under Development
- Industrial-scale flame studies
 - High-Pressure Optical Chamber and High-Pressure Generic Swirl Burner
- Advanced Diagnostics
 - PIV and Laser Doppler Velocimetry (LDV/LDA) Flow
 - Chemiluminescence and PLIF Reactive Species
 - Phase Doppler Anemometry (PDA) Sprays
 - High-speed imaging/PIV Turbulence and transient phenomena
 - Industry-standard gas analysis techniques (NOx, CO2, UHC)
 - Bespoke particulate matter measurement capability (EASA)
 - Dynamic pressure measurement, signal analysis
- Numerical Modelling
 - Chemical kinetics CHEMKIN
 - CFD RANS, URANS, LES (Fluent, OpenFOAM)

Constant Volume Combustion Bomb (CVCB)

Laminar Flame Propagation

- Design Pressure = 14 bar
- Schlieren optical technique
- Parametric evaluation of temperature, pressure, reactant mixture and humidity.
- Characterise flame stretch using Markstein length.
- Mass flow control to regulate gaseous or vaporised fuel and equivalence ratio.

High-Pressure Counterflow Burner (HPCFB)

Flame Extinction/Stretch

- Design: 20 bar at 723 K
- Diametric quartz windows allow for the application of optical diagnostics
- Design has allowed for trial of components built using AM or '3D printed' stainless steel technology, with integrated cooling channels.
- Burner commissioned at atmospheric pressure/temperature. Pressure casing under design.

High-Pressure Optical Chamber (HPOC)

- Design: 16 bar at 900 K
- Utilized with High-Pressure Generic Swirl Burner (HPGSB)
- Axial and radial visual access for advanced optical diagnostics (CL, PIV, PLIF, LDA) + dynamic pressure

Current Research Projects

FLEXIS – Pan–Wales Energy Project Funded by WEFO

- Funded purchase of new high-speed imaging system: Phantom HS Camera, 20 kHz Litron PIV laser, high-speed image intensifier
- Supports experimental studies in the HPOC and CVCB (pressurized steelworks gases, ammonia/hydrogen blends)

Current Research Projects

Flex-E-Plant - Major UK Consortium Funded by EPSRC

- Pressurized combustion in the HPOC of natural gas blends with higher hydrocarbons (C₂+, LNG) and hydrogen (P2G) to measure dynamics, emissions, flame shape, OH/NO PLIF
- Evaluation of C₂+ influence on flame stretch effects in CVCB

SELECT – Academic/Industrial Project Funded by EPSRC

- Pressurized combustion in the HPOC focused on the use of exhaust gas recirculation to limit CO₂ emissions from gas turbine power plants and increase CO₂ purity for CCS.
- Significant influence of pressure on CO emissions at near-stoichiometric operation. Upcoming testing planned at 8 bar/200 kW.

Ongoing Research Projects

AGT – Advanced Gas Turbines – EPSRC

- Academic partnership with Imperial College London in development of highpressure counterflow burner (based on Imperial counterflow design)
- GTRC leading HPOC experiments with novel fuels (influence of humidity on high-CO syngas, high H₂ combustion).

Green Ammonia Energy Storage – Innovate UK

- Cardiff, Siemens, Oxford, and STFC developing demonstrator for ammonia energy storage from wind power.
- GTRC focused on pressurized combustion of ammonia/hydrogen blends, identifying key operability range for reduced NOx emissions (e.g. reburn + steam injection). Increased pressure shown to reduce NOx emissions.

Future Work

- Cardiff University/Renishaw Strategic Partnership funding for 3D Printing in Gas Turbine Combustors
 - 12 month project with Renishaw and HiETA
 - Evaluate surface roughness effects on combustion stability and procure high-temperature borescope
- Separate Renishaw iCASE 4 year PhD Studentship recently awarded on novel 3D Printing in Gas Turbine Combustors – Currently advertised
- New RQL (aero engine) burner under construction
- Pursuing funding avenues for continued work with ammonia and hydrogen ("carbon-free fuels")

Thank you kindly for your attention!

