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How to model droplet concentration evolution?
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Motivation

S. Begg, F. Kaplanski, S. Sazhin, M. Hindle, M. Heikal. Int J. Engine Res. 2009

• Sprays are essentially 
polydisperse

• Droplet sizes and 
distribution evolve 
with time



Standard FLA

Jacobian of the 
transformation form Eulerian 
to Lagrangian coordinates

Continuity
equation

Momentum
balance

Energy
balance

Equations
for Jacobian
components

Lagrangian variables are the initial coordinates of the droplet positions:

A system of ODE, initial conditions 
correspond to the way the dispersed phase 
is introduced or fed to the flow



FLA for polydisperse admixture
Lagrangian variables are the initial coordinates of the droplet positions and 
the initial size:

Continuity equation formulated for the distribution of droplets over space 
and sizes

Jacobian of the transformation form Eulerian to Lagrangian coordinates



FLA for polydisperse admixture
For a chosen particle trajectory, we have the following system of ODE:

Initial conditions correspond to the way the dispersed phase is introduced or fed to the flow



1D flow of droplets in still hot air
Force and heat flux on the droplet:

Assume all the heat that reaches the droplet is spent on evaporation:

Non-dimensional parameters:

Characteristic droplet radius, r0, droplet initial velocity U and temperature T0, ndt total initial droplet number density at x0



1D flow of droplets in still hot air
Assume log-normal distribution of droplet sizes at x0 with mean and variance 
for the corresponding normal distribution M = 0.16 and S = 0.4



1D flow of droplets in still hot air



1D flow of droplets in still hot air

Initial conditions:



1D flow of droplets in still hot air
The system can be solved analytically:

The system was solved numerically using 4th

order Runge-Kutta method. Numerical solution 
was verified against the analytical solution



1D flow of droplets in still hot air
δ = 1

Total number density Velocity distribution vs size Number density vs size
Discretisation: 1 - 1, 2 - 10, 3 - 100, 4 - 1000



2D spray in cross flow

Initial conditions:



2D spray in cross flow



2D spray in cross flow
δ = 1, β = 1

Number density along trajectories



2D spray in cross flow
δ = 1, β = 1

Total number density in horizontal cross-sections

Discretisation:

Nd = 1 Nd = 10 Nd = 100 Nd = 1000
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