Advanced Engineering Centre

Spray and Combustion SIGs meeting 8 April 2019

Recent developments in gas-droplet flow simulations based on the Fully Lagrangian Approach

Oyuna Rybdylova

Advanced Engineering Centre

Outline

 \mathbf{X}

- Background
- Basic equations (droplets): original and generalised FLA
- Application of generalised FLA to 1D and 2D flow and preliminary results
- Outlook

×

Advanced Engineering Centre

How to model droplet concentration evolution?

Astrophysics and Space Science

Lagrangian Modelling of Dust Admixture in Gas Flows

'A generalized Fully Lagrangian Approach for gas-droplet flows' supported by EPSRC (EP/R012024/1)

Dr Oyuna Rybdylova, Dr Timur Zaripov, Dr Yuan Li)

×

Advanced Engineering Centre

Motivation

- Sprays are essentially polydisperse
- Droplet sizes and distribution evolve with time

Fig. 3 Distribution of droplet diameters and velocities in the PFI injector spray plotted against time from SOI when (a) r = 0 mm and x = 15 mm and (b) when r = 6 mm and x = 55 mm

S. Begg, F. Kaplanski, S. Sazhin, M. Hindle, M. Heikal. Int J. Engine Res. 2009

×

Advanced Engineering Centre

Standard FLA

Lagrangian variables are the initial coordinates of the droplet positions: $\,x_0,\,y_0,\,z_0$

	$\overline{\partial t} = \mathbf{v}_d,$	$\overline{\partial t} = \mathbf{I}_d,$	balance
Energy $c_{dl}\frac{\partial T_d}{\partial t} = q_d,$	$\frac{\partial J_{ij}}{\partial t} = q_{ij},$	$\frac{\partial q_{ij}}{\partial t} = \frac{\partial f_{id}}{\partial x_{j0}}$	Equations for Jacobian

$$\begin{split} |J| \equiv |\det(J)| & \text{Jacobian of the} \\ J_{ij} = \partial x_i / \partial x_{j0} & \text{to Lagrangian constraints} \end{split}$$

transformation form Eulerian to Lagrangian coordinates

A system of ODE, initial conditions correspond to the way the dispersed phase is introduced or fed to the flow

Advanced Engineering Centre

FLA for polydisperse admixture

Lagrangian variables are the initial coordinates of the droplet positions and the initial size:

Continuity equation formulated for the distribution of droplets over space and sizes

Jacobian of the transformation form Eulerian to Lagrangian coordinates

$$J = \begin{pmatrix} J_{11} & J_{12} & J_{13} & J_{14} \\ J_{21} & J_{22} & J_{23} & J_{24} \\ J_{31} & J_{32} & J_{33} & J_{34} \\ J_{41} & J_{42} & J_{43} & J_{44} \end{pmatrix} = \begin{pmatrix} \partial x / \partial x_0 & \partial x / \partial y_0 & \partial x / \partial z_0 & \partial x / \partial r_{d0} \\ \partial y / \partial x_0 & \partial y / \partial y_0 & \partial y / \partial z_0 & \partial y / \partial r_{d0} \\ \partial z / \partial x_0 & \partial z / \partial y_0 & \partial z / \partial z_0 & \partial z / \partial r_{d0} \\ \partial r_d / \partial x_0 & \partial r_d / \partial y_0 & \partial r_d / \partial z_0 & \partial r_d / \partial r_{d0} \end{pmatrix}$$

 $|J| \equiv |\det(J)|$

 x_0, y_0, z_0, r_{d0}

$$\tilde{n}_d\left(t, \mathbf{x}, r_d\right) |J| = \tilde{n}_{d0},$$

×

Advanced Engineering Centre

FLA for polydisperse admixture

For a chosen particle trajectory, we have the following system of ODE:

$$\frac{\partial \mathbf{x}_{d}}{\partial t} = \mathbf{v}_{d}, \quad \frac{\partial \mathbf{v}_{d}}{\partial t} = \mathbf{f}_{d},$$

$$c_{dl} \frac{\partial T_{d}}{\partial t} = q_{d}, \quad \frac{\partial r_{d}}{\partial t} = \dot{r}_{d},$$

$$\frac{\partial J_{ij}}{\partial t} = q_{ij}, \quad \frac{\partial q_{ij}}{\partial t} = \frac{\partial f_{di}}{\partial x_{k}} J_{kj} + \frac{\partial f_{di}}{\partial r_{d}} J_{4j}, \quad i = 1, 2, 3, \quad j = 1, ..., 4$$

$$\frac{\partial J_{4j}}{\partial t} = \frac{\partial \dot{r}_{d}}{\partial x_{0j}} J_{4j}, \quad \frac{\partial J_{44}}{\partial t} = \frac{\partial \dot{r}_{d}}{\partial r_{d}} J_{44}, \quad i, j = 1, 2, 3.$$

Initial conditions correspond to the way the dispersed phase is introduced or fed to the flow

Advanced Engineering Centre

1D flow of droplets in still hot air

Force and heat flux on the droplet:

$$\mathbf{f}_d = 6\pi r_d^* \mu \left(\mathbf{v}^* - \mathbf{v}_d^* \right)$$
$$q_d = 4\pi r_d^* \lambda \left(T^* - T_d^* \right)$$

Assume all the heat that reaches the droplet is spent on evaporation:

*

$$\dot{m} = \frac{q_d}{H}$$

Non-dimensional parameters:

$$x_{(d)} = \frac{x_{(d)}^*}{l_{\tau}}, \ u_{(d)} = \frac{u_{(d)}^*}{U}, \ t = \frac{Ut^*}{l_{\tau 0}}, \ r_d = \frac{r_d^*}{r_0}, \ \tilde{n}_d = \frac{\tilde{n}_d^*}{n_{dt}},$$
$$T(T_s) = \frac{T^*(T_s^*) - T_0}{T_a - T_0}, \ l_{\tau 0} = \frac{m_0 U}{6\pi r_0 \mu}, \ m_0 = \frac{4}{3}\pi r_0^3 \rho_{dl}$$

Characteristic droplet radius, r_0 , droplet initial velocity U and temperature T_0 , n_{dt} total initial droplet number density at x_0

×

×

Advanced Engineering Centre

1D flow of droplets in still hot air

Assume log-normal distribution of droplet sizes at x_0 with mean and variance for the corresponding normal distribution M = 0.16 and S = 0.4

×

Advanced Engineering Centre

1D flow of droplets in still hot air

$$\begin{aligned} \frac{dx_d}{dt} &= u_d, \quad \frac{du_d}{dt} = -\frac{1}{r_d^2} u_d, \\ T_d &= 0, \quad \frac{dr_d^2}{dt} = -\delta, \\ \frac{dJ_{12}}{dt} &= q_{12}, \quad \frac{dq_{12}}{dt} = -\frac{1}{r_d^2} q_{12} + \frac{2}{r_d^3} u_d J_{22} \\ \frac{dJ_{22}}{dt} &= \frac{\delta}{2r_d^2} J_{22} \\ \delta &= \frac{4}{9} \frac{\lambda \left(T_a - T_0\right)}{\mu H}. \end{aligned}$$

×

Advanced Engineering Centre

1D flow of droplets in still hot air

$$\tilde{n}_d \left(t, x, r_d \right) \begin{vmatrix} u_d & \frac{\partial x}{\partial r_{d0}} \\ \dot{r} & \frac{\partial r_d}{\partial r_{d0}} \end{vmatrix} = \tilde{n}_{d0} u_{d0}$$

Initial conditions:

$$x = x_0, u_d = 1, T_d = 0, \tilde{n}_d = \tilde{n}_{d0}, r_d = r_{d0}$$

 $J_{12} = 0, \quad J_{22} = 1, \quad q_{12} = 0.$

×

Advanced Engineering Centre

1D flow of droplets in still hot air

The system can be solved analytically:

$$\begin{aligned} x_{d} &= \frac{r_{d0}^{2}}{\delta + 1} \left[1 - \left(1 - \frac{\delta t}{r_{d0}^{2}} \right)^{\frac{\delta + 1}{\delta}} \right], \\ u_{d} &= \left(\frac{r_{d}}{r_{d0}} \right)^{2/\delta} = \left(1 - \frac{\delta t}{r_{d0}^{2}} \right)^{1/\delta}, \\ r_{d}^{2} &= r_{d0}^{2} - \delta t, \\ J22 &= \frac{r_{d0}}{r_{d}}, \\ J12 &= -\frac{2}{r_{d0}} \left(1 - \frac{\delta t}{r_{d0}^{2}} \right)^{1/\delta} t, \\ \tilde{n}_{d} &= \tilde{n}_{d0} \left(1 - \frac{\delta t}{r_{d0}^{2}} \right)^{-1/2} = \tilde{n}_{d0} \frac{r_{d0}}{r_{d}} \end{aligned}$$

The system was solved numerically using 4th order Runge-Kutta method. Numerical solution was verified against the analytical solution

Advanced Engineering Centre

1D flow of droplets in still hot air

δ = 1

×

×

Advanced Engineering Centre

2D spray in cross flow

$$\begin{split} \tilde{n}_{d}\left(t,x,r_{d}\right) \left| \det \begin{pmatrix} J_{11} & u_{d} & J_{13} \\ J_{21} & v_{d} & J_{23} \\ J_{31} & \dot{r} & J_{33} \end{pmatrix} \right| &= \tilde{n}_{d0}v_{d0} \\ \delta &= \frac{4}{9}\frac{\lambda\left(T_{a} - T_{0}\right)}{\mu H} \\ \end{split}$$
Initial conditions:

$$x = x_{0} \in [-\epsilon,\epsilon], \ y = 0, \ u_{d} = U_{j}\cos\left(-\frac{\pi}{4}\cdot\frac{x_{0}}{\epsilon} + \frac{\pi}{2}\right), \ v_{d} = U_{j}\sin\left(-\frac{\pi}{4}\cdot\frac{x_{0}}{\epsilon} + \frac{\pi}{2}\right), \\ T_{d} = 0, \ \tilde{n}_{d} = \tilde{n}_{d0}, r_{d} = r_{d0} \\ J_{11} = 1, \ J_{13} = 0, \ J_{21} = 0, \ J_{23} = 0, \ J_{31} = 0, \ J_{33} = 1, \\ q_{11} = \frac{1}{\epsilon}\frac{\pi}{4}U_{j}\cos\left(\frac{\pi}{4}\frac{x_{0}}{\epsilon}\right), \ q_{13} = 0, \ q_{21} = -\frac{1}{\epsilon}\frac{\pi}{4}U_{j}\sin\left(\frac{\pi}{4}\frac{x_{0}}{\epsilon}\right), \ q_{23} = 0. \end{split}$$

×

Advanced Engineering Centre

2D spray in cross flow

$$\begin{aligned} \frac{dx_d}{dt} &= u_d, \quad \frac{dy_d}{dt} = v_d, \quad \frac{du_d}{dt} = \frac{1}{r_d^2} \left(1 - u_d \right), \quad \frac{dv_d}{dt} = -\frac{1}{r_d^2} v_d \\ T_d &= 0, \quad \frac{dr_d^2}{dt} = -\delta, \\ \frac{dJ_{11}}{dt} &= q_{11}, \quad \frac{dJ_{13}}{dt} = q_{13}, \\ \frac{dJ_{21}}{dt} &= q_{21}, \quad \frac{dJ_{23}}{dt} = q_{23}, \\ \frac{dq_{11}}{dt} &= -\frac{1}{r_d^2} q_{11} - \frac{2}{r_d^3} \left(1 - u_d \right) J_{31}, \\ \frac{dq_{13}}{dt} &= -\frac{1}{r_d^2} q_{13} - \frac{2}{r_d^3} \left(1 - u_d \right) J_{33}, \\ \frac{dq_{21}}{dt} &= -\frac{1}{r_d^2} q_{21} + \frac{2}{r_d^3} v_d J_{31}, \\ \frac{dq_{23}}{dt} &= -\frac{1}{r_d^2} q_{23} + \frac{2}{r_d^3} v_d J_{33}, \\ \frac{dJ_{31}}{dt} &= 0, \quad \frac{dJ_{33}}{dt} = \frac{\delta}{2r_d^2} J_{33}, \end{aligned}$$

Advanced Engineering Centre

2D spray in cross flow

 δ = 1, β = 1

×

Number density along trajectories

Advanced Engineering Centre

2D spray in cross flow

 $\delta = 1, \beta = 1$

×

Discretisation:

Total number density in horizontal cross-sections

Advanced Engineering Centre

Acknowledgements

The authors are grateful to the EPSRC (UK) (grant EP/R012024/1) for their financial support.