Modelling of heating and evaporation of kerosene droplets

L. Poulton, O. Rybdylova, S.S. Sazhin

Advanced Engineering Centre, School of Computing, Engineering and Mathematics, University of Brighton, Brighton, BN2 4GJ, UK

University of Brighton

Advanced Engineering Centre

Plan

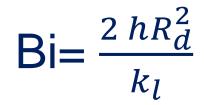
Background

Kerosene droplets

Surrogate droplets

Final thoughts

×


University of Brighton

Advanced Engineering Centre

Background

Dimensionless numbers

Biot number

Dimensionless numbers

Biot number

Fourier number

$$\mathsf{Bi} = \frac{2 \ h R_d^2}{k_l}$$

$$Fo = \frac{k_l t}{c_l \rho_l R_d^2}$$

Effective thermal conductivity (spherical droplets)

$$c_l \rho_l \frac{\partial T}{\partial t} = k_{\text{eff}} \left(\frac{\partial^2 T}{\partial R^2} + \frac{2}{R} \frac{\partial T}{\partial R} \right) + P_1(R)$$

 $P_1(R)$ is the power generated per unit volume inside the droplet due to thermal radiation

Boundary and initial conditions:

$$h(T_{g\infty} - T_s) = k_{\text{eff}} \frac{\partial T}{\partial R}|_{R=R_R}$$
$$\frac{\partial T}{\partial R}|_{R=0} = 0; \ T(t=0) = T_0(R); \quad R \le R_d$$

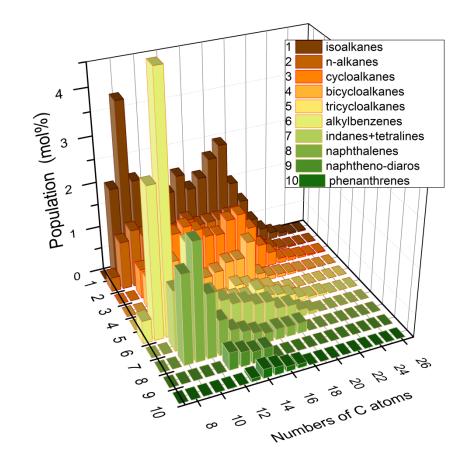
Effective thermal conductivity $k_{eff} = \chi k_l$ where $\chi = 1.86 + 0.86$ tanh [2.225 log₁₀(Pe_d/30)]

 χ increases from 1 to 2.72 when $Pe_d = Re_{ds}Pr_d$ increases from <10 to > 500

Discrete components model (spherical droplets)

$$\frac{\partial Y_{li}}{\partial t} = D_{\text{eff}} \left(\frac{\partial^2 Y_{li}}{\partial R^2} + \frac{2}{R} \frac{\partial Y_{li}}{\partial R} \right)$$

 γ T T


Boundary and initial conditions:

$$\alpha(\epsilon_{i} - Y_{lis}) = D_{\text{eff}} \frac{\partial Y_{li}}{\partial R}|_{R=R_{R}=0}$$

$$\frac{\partial Y_{li}}{\partial R}|_{R=0} = 0; \quad Y_{li} \quad (t=0) = Y_{li0} \quad (R); \quad R \leq R_{d}$$

Effective diffusivity $D_{eff} = \chi_Y D_l$ where $\chi_Y = 1.86 + 0.86 \tanh [2.225 \log_{10}(\text{Pe}_{dY}/30)]$ χ_Y increases from 1 to 2.72 when $\text{Pe}_{dY} = \text{Re}_d \text{Sc}$ increases from <10 to > 500

Sc=v_l/D_l is the liquid Schmidt number;
$$\epsilon_i = \frac{Y_{vis}}{\sum_i Y_{vis}}$$
 $\alpha = \frac{|\dot{m_d}|}{4\pi\rho_l R_d^2}$

Realistic Diesel fuel

Multi-dimensional quasi-discrete model

m	Component		
1	alkanes		
2	cycloalkanes		
3	bicycloalkanes		
4	alkylbenzenes		
5	indanes & tetralines		
6	naphthalenes		
7	tricycloalkane		
8	diaromatic		
9	phenanthrene		

$$\overline{n}_{1m} = \frac{\sum_{n=n_{1m}}^{n=n(\varphi_m+1)m} (nX_{nm})}{\sum_{n=n_{1m}}^{n=n(\varphi_m+1)m} X_{nm}},$$

$$\overline{n}_{2m} = \frac{\sum_{n=n(\varphi_m+2)m}^{n=n(2\varphi_m+2)m} (nX_{nm})}{\sum_{n=n(\varphi_m+2)m}^{n=n(2\varphi_m+2)m} X_{nm}},$$

$$\overline{n}_{3m} = \frac{\sum_{n=n(2\varphi_m+3)m}^{n=n(3\varphi_m+3)m} (nX_{nm})}{\sum_{n=n(2\varphi_m+3)m}^{n=n(3\varphi_m+3)m} X_{nm}},$$

$$\overline{n}_{\ell m} = \frac{\sum_{n=n(\ell-1)}^{n=nk_m} (nX_{nm})}{\sum_{n=n(\ell-1)\varphi_m+\ell)m}^{n=nk_m} (nX_{nm})},$$

Fuel 129 (2014) 238-266

A multi-dimensional quasi-discrete model for the analysis of Diesel fuel droplet heating and evaporation

S.S. Sazhin^{a,*}, M. Al Qubeissi^a, R. Nasiri^a, V.M. Gun'ko^{a,b}, A.E. Elwardany^c, F. Lemoine^{d,e}, F. Grisch^f, M.R. Heikal^a

^a Sir Harry Ricardo Laboratories, Centre for Automotive Engineering, School of Computing, Engineering and Mathematics, Faculty of Science and Engineering, University of Brighton, Brighton BN2 4GJ, UK

^b Chuiko Institute of Surface Chemistry, 17 General Naumov Street, Kiev 03164, Ukraine

⁶ Clean Combustion Research Centre, Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Saudi Arabia ^d Université de Lorraine, LEMTA, UMR 7563, Vandoeuvre-lès-Nancy, France

^e CNRS, LEMTA, UMR 7563, Vandoeuvre-lès-Nancy, France

^f INSA-Rouen, UMR-CNRS 6614, CORIA, BP 8, 76801 Saint Etienne du Rouvray Cedex, France

Sergei Sazhin

Droplets and Sprays

Fuel 196 (2017) 69-101

Review article

Modelling of fuel droplet heating and evaporation: Recent results and unsolved problems

Sergei S. Sazhin

Sir Harry Ricardo Laboratories, Advanced Engineering Centre, School of Computing, Engineering and Mathematics, University of Brighton, Brighton BN2 4GJ, UK

D Springer

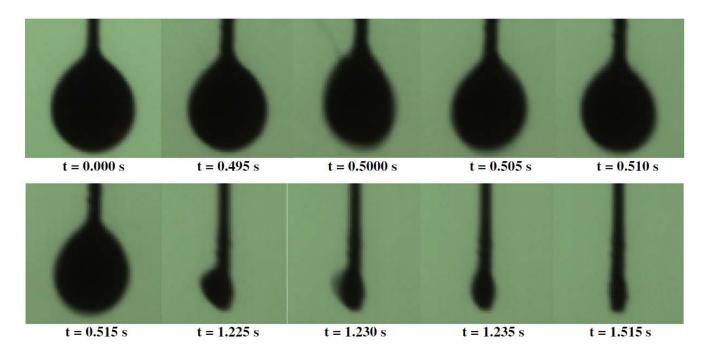
Kerosene droplets

Kerosene composition

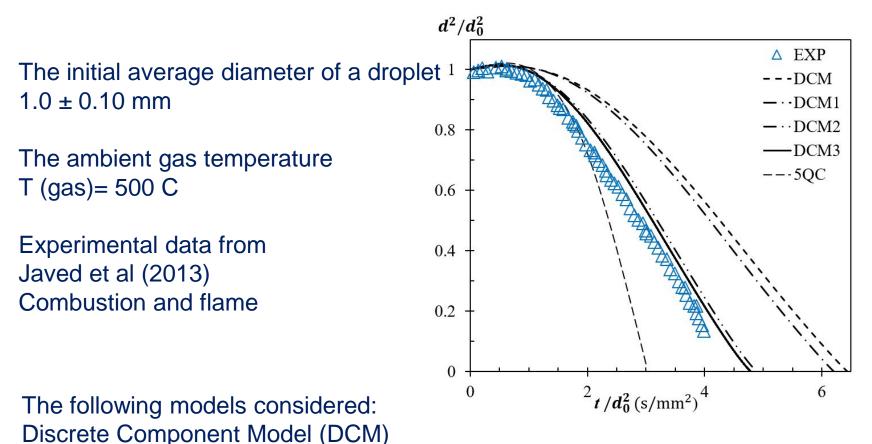
CN	Par	Na/Ol	Alk	Napht	Dia
C7	0.4100	0.1700	0.0900	0	0
C8	0.5800	0.6300	0.6100	0	0
C9	2.2100	2.3700	1.5600	0.2200	0
C10	4.7900	5.8300	2.7200	1.0600	0.0900
C11	6.0900	6.9300	2.1900	1.8100	0.2500
C12	7.5200	7.4000	3.0000	3.4800	0.3000
C13	5.9300	4.4900	2.9100	0.9000	0.0600
C14	6.0300	3.7800	1.7400	0.2400	0
C15	6.2100	1.6700	0.3500	0	0
C16	2.1600	0.7400	0	0	0
C17	0	0.4800	0	0	0

Table 1: Mass fractions of the components of kerosene sample K1 in percent, inferred from Table 6 of [16]. CN stands for carbon number, Par for paraffins, Na/Ol for naph-thenes/olefins, Alk for alkylbenzene, Napht for naphtobenzene, Dia for diaromatics

K. Lissitsyna, S. Huertas, L. C. Quintero, L. M. Polo, Piona analysis of kerosene by comprehensive two-dimensional gas chromatography coupled to time of flight mass spectrometry, Fuel 116 (2014) 716 – 722.


Kerosene composition (revised)

CN	Alk	Cycloalk	Alkyb	Ind & Tet	Naph
C7	0.6666	0.2820	0.1590	0	0
C8	0.8272	0.9145	0.9356	0	0
C9	2.8071	3.0581	2.1136	0.3031	0
C10	5.4843	6.7705	3.3002	1.3056	0.1143
C11	6.3470	7.3163	2.4058	2.0156	0.2862
C12	7.1920	7.1614	3.0108	3.5362	0.3126
C13	5.2398	4.0110	2.6882	0.8410	0.0574
C14	4.9514	3.1355	1.4889	0.2076	0
C15	4.7625	1.2929	0.2789	0	0
C16	1.5539	0.5371	0	0	0
C17	0	0.3279	0	0	0
Total	39.8	34.8	16.4	8.2	0.8


Table 2: Molar fractions of the components of kerosene sample K1 (in percent), inferred from Table 1 and additional assumptions described in the paper. CN stands for carbon number, Alk stands for alkanes, Cycloalk stands for cycloalkanes, Alkyb stands for alkylbenzenes, Ind & Tet for indanes & tetralines, Naph for naphthalenes.

Kerosene droplets

I. Javed et al./Combustion and Flame 160 (2013) 2955-2963

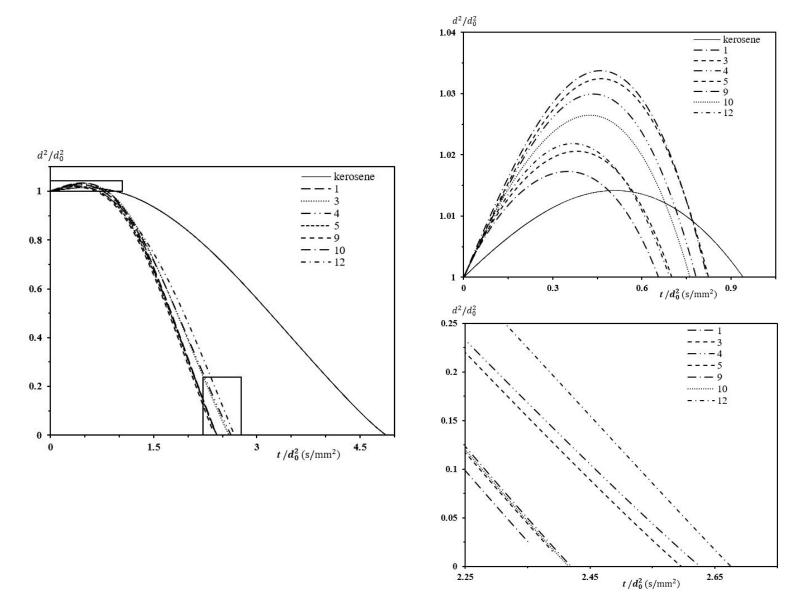
Kerosene droplets

DCM as above and the contribution of supporting fibre (plots DCM1); DCM as above accounting for natural convection (plots DCM2); DCM as above accounting for natural convection and supporting fibre (plots DCM3); 5 Quasi components, Multi-Dimensional Quasi-Discrete Model (5QC)

Surrogate droplets

Surrogate droplets

Surr.	n- or iso- Alkanes	Cycloalkanes	Alkybenzene	Ind, Tet & Naph
1	100% of $C_{10}H_{22}$	0	0	0
2	57.6923% of $C_{12}H_{26}$	19.7436% of C_7H_{14}	22.5641% of C_8H_{10}	0
3	46.4229% of $C_{10}H_{22}$	26.0095% of $C_{10}H_{20}$	27.5676% of $C_{10}H_{14}$	0
4	30.8611% of $C_{10}H_{22}$	33.5642% of $C_{10}H_{20}$	35.5748% of $C_{10}H_{14}$	0
5	76.9231% of $C_{10}H_{22}$	0	23.0769% of $\mathrm{C_6H_6}$	0
6	77.6398% of $C_{12}H_{26}$	0	22.3602% of C_9H_{12}	0
7	28.7613% of $C_{12}H_{26}$	19.6855% of C_7H_{14}	0	6.1997% of $C_{10}H_{12}$
	19.5321% of $C_{14}H_{30}$	15.6845% of $C_{10}H_{20}$		
	10.1368% of $C_{16}H_{34}$			
8	40.1989% of $C_{12}H_{26}$	14.3968% of C_7H_{14}	0	18.7159% of $C_{11}H_{10}$
	26.6884% of $C_{16}H_{34}$			
9	9.1% of C_6H_{14}	0	18.2% of C_6H_6	0
	72.7% of $C_{10}H_{22}$			
10	87.0841% of $C_{10}H_{22}$	0	12.9159% of C_6H_6	0
11	10.9974% of C_8H_{18}	9.7223% of C_9H_{18}	0	30.6811% of $C_{11}H_{10}$
	18.3902% of $C_{12}H_{26}$			
	30.2090% of $C_{16}H_{34}$			
12	28.1328% of $C_{10}H_{22}$	19.7829% of C_7H_{14}	11.3045% of C_8H_{10}	6.2303% of $C_{10}H_{12}$
	19.2691% of $C_{12}H_{26}$			
	15.2804% of $C_{16}H_{34}$			
13	18.6725% of $C_{10}H_{22}$	26.1542% of $C_{10}H_{20}$	16.8052% of C_6H_6	0
	38.3681% of $C_{12}H_{26}$			


Table 1: Mass fractions of the components of kerosene surrogates (Surr.). 'Ind, Tet & Naph' stands for Indane and Tetraline $(C_{10}H_{12})$ or Naphtalenes $(C_{11}H_{10})$. n-Alkanes are shown in italic, while iso-alkanes are shown in bold.

Surrogate droplets

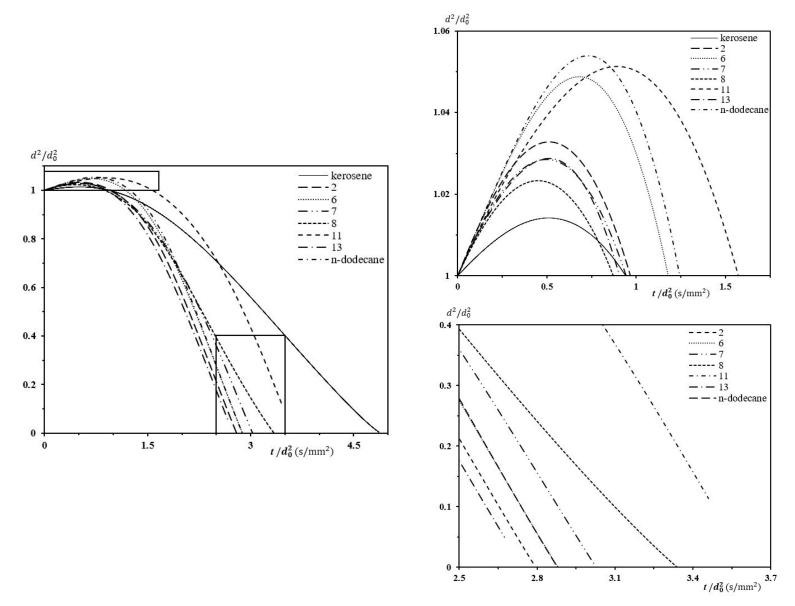
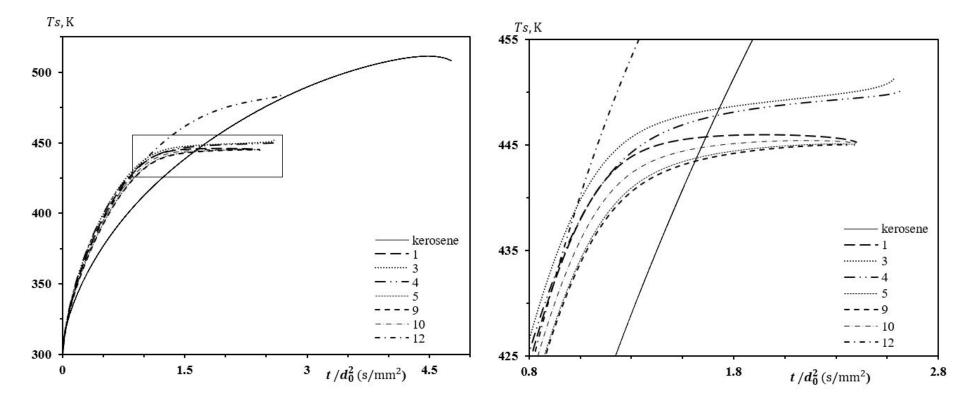
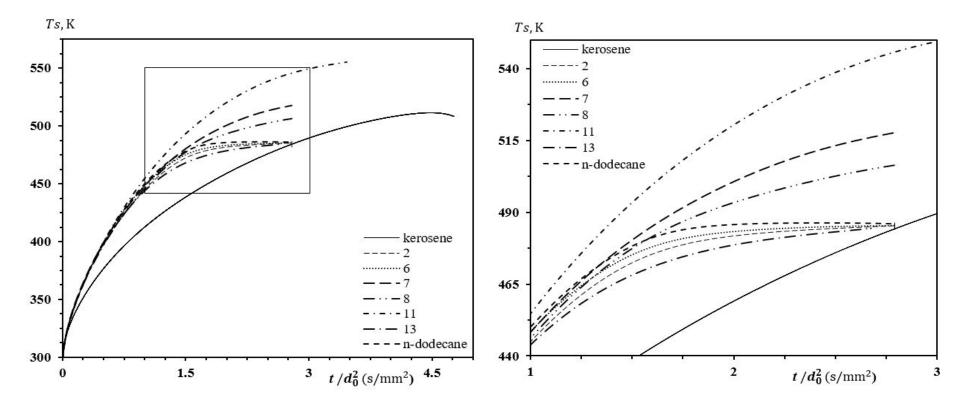

Surr.	Known as	Refs.
1	Normal decane	[19, 20]
2	Surrogate C	[21]
3	Surrogate D	[22]
4	Surrogate E	[22]
5	Aachen surrogate	[24]
6	Modified Aachen surrogate	[22]
7	Modified Utah surrogate	[25]
8	Drexel surrogate 2	[22]
9	Strelkova surrogate	[26]
10	Lindstedt surrogate	[31]
11	Slavinskaya surrogate	[23]
12	SU1	0
13	SU2	0

Table 2: Names under which surrogates mentioned in Table 1 are known and the references where they are described. 'O' shows that these surrogates are the original ones developed at Samara National Research University (see Section 2 for further details).


Surrogate (n-decane dominated)


Surrogate (n-dodecane dominated)

Surrogate (n-decane dominated)

Surrogate (n-dodecane dominated)

Papers

Evaporation of kerosene droplets: a comparison of the modelling approaches

Luke Poulton^a, Tajwali Khan^b, Oyuna Rybdylova^{a,*}, Vladimir M. Gun'ko^c, Fang Wang^{d,e}, Mansour Al Qubeissi^{f,g}, Sergei S. Sazhin^a

 ^aAdvanced Engineering Centre, School of Computing, Engineering and Mathematics, University of Brighton, Brighton, BN2 4GJ, UK
 ^bInstitute of Space Technology, P.O. Box 2750, Islamabad 44000, Pakistan
 ^cChuiko Institute of Surface Chemistry, 17 General Naumov Street, Kiev 03164, Ukraine ^dAeroengine numerical simulation research center, School of Energy and Power Engineering, Beihang University, Beijing 100191, China
 ^eCollaborative Innovation Center of Advanced Aero-Engine, Beijing 100191, China
 ^fInstitute for Future Transport and Cities, Coventry University, Coventry, CV1 5FB, UK
 ^gSchool of Mechanical, Aerospace and Automotive Engineering, Faculty of Engineering, Environment and Computing, Coventry University, Coventry, CV1 2JH, UK

Under review in International J Thermal Science

Modelling of surrogate kerosene droplet evaporation: comparative analysis

L. Poulton¹, O. Rybdylova^{1,*}, I.A. Zubrilin², S.G. Matveev², N.I Gurakov², S.S. Sazhin¹

¹Sir Harry Ricardo Laboratories, Advanced Engineering Centre, School of Computing, Engineering and Mathematics, University of Brighton, Brighton, BN2 4GJ, UK

² Samara National Research University, 34, Moskovskoye shosse, Samara, 443086, Russia

Final thoughts

Outstanding issues:

1. Sensitivity of the results to the choice of kerosene composition and approximation of the properties of the components.

2. Surrogates heating, evaporation and autoignition

Acknowledgements

This work was supported by the UK Engineering and Physical Sciences Research Council [EPSRC Studentship 1792531 and grants EP/M002608/1 and EP/R012024/1]. The UK Fluids network is gratefully acknowledged for its support of the Special Interest Group 'Sprays in engineering applications: modelling and experimental studies'. This group was a platform for the exchange of ideas between researchers working on various aspects of spray research. This presentation originated in part as a result of this exchange of ideas.

Thank you for your attention

Modelling of heating and evaporation of kerosene droplets

L. Poulton, O. Rybdylova, S.S. Sazhin

Advanced Engineering Centre, School of Computing, Engineering and Mathematics, University of Brighton, Brighton, BN2 4GJ, UK

University of Brighton

Advanced Engineering Centre