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Effective thermal conductivity (spherical droplets)

oT 0°T = 20T
(aRZ Eﬁ) + P (R)

CLp1 o, = Kefr

P;(R) is the power generated per unit volume inside the droplet due to thermal radiatior

Boundary and initial conditions:
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Effective thermal conductivity k.¢=xk; where x=1.86+ 0.86 tanh [2.225 log;,(Pe;/30)]

X Increases from 1 to 2.72 when Pe;=Re Pr,; increases from <10 to > 500



Discrete components model (spherical droplets)
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Boundary and initial conditions:
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Effective diffusivity D.g=x, D; where ¥X,=1.86+ 0.86 tanh [2.225 log;,(Pegy/30)]

Xy Increases from 1 to 2.72 when Pegy=Re,Sc increases from <10 to > 500
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Multi-dimensional quasi-discrete model
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Kerosene droplets



Kerosene composition

‘ CN H Par Na/Ol Alk ‘ Napht Dia
C7 0.4100 0.1700 0.0900 0 0
C8 0.5800 0.6300 0.6100 0 0
C9 2.2100 2.3700 1.5600 0.2200 0

C10 4.7900 5.8300 2.7200 1.0600 0.0900
C11 6.0900 6.9300 2.1900 1.8100 0.2500
C12 7.5200 7.4000 3.0000 3.4800 0.3000
C13 5.9300 4.4900 2.9100 0.9000 0.0600
Cl4 6.0300 3.7800 1.7400 0.2400 0
C15 6.2100 1.6700 0.3500 0 0
C16 2.1600 0.7400 0 0 0
C17 0 0.4800 0 0 0

Table 1. Mass fractions of the components of kerosene sample K1 in percent, inferred
from Table 6 of [16]. CN stands for carbon number, Par for paraffins, Na/Ol for naph-
thenes/olefins, Alk for alkylbenzene, Napht for naphtobenzene, Dia for diaromatics

K. Lissitsyna, S. Huertas, L. C. Quintero, L. M. Polo, Piona analysis
of kerosene by comprehensive two-dimensional gas chromatography
coupled to time of flight mass spectrometry, Fuel 116 (2014) 716 — 722.



Kerosene composition (revised)

‘ CN ‘ ‘ Alk ‘ Cycloalk ‘ Alkyb ‘ Ind & Tet ‘ Naph ‘
C7 0.6666 0.2820 0.1590 0 0
C8 0.8272 0.9145 0.9356 0 0
9 2.8071 3.0581 2.1136 0.3031 0
C10 5.4843 6.7705 3.3002 1.3056 0.1143
C11 6.3470 7.3163 2.4058 2.0156 0.2862
C12 7.1920 7.1614 3.0108 3.5362 0.3126
C13 5.2398 4.0110 2.6882 0.8410 0.0574
C14 4.9514 3.1355 1.4889 0.2076 0
C15 4.7625 1.2929 0.2789 0 0
C16 1.5539 0.5371 0 0 0
C17 0 0.3279 0 0 0

Total 39.8 34.8 16.4 8.2 0.8

Table 2: Molar fractions of the components of kerosene sample K1 (in percent), inferred
from Table 1 and additional assumptions described in the paper. CN stands for car-
bon number, Alk stands for alkanes, Cycloalk stands for cycloalkanes, Alkyb stands for

alkylbenzenes, Ind & Tet for indanes & tetralines, Naph for naphthalenes.



Kerosene droplets

I. Javed et al./ Combustion and Flame 160 (2013) 2955-2963

t=0.000s t=0.495s t=0.5000 s t=0.505s t=0.510s

t=0.515s t=1.225s t=1.230s t=1.235s t=1.515s



Kerosene droplets

d?/d}

The initial average diameter of a droplet ! =25

1.0+ 0.10 mm

0B =
The ambient gas temperature ;
T (gas)=500 C 0.6 1
Experimental data from 04 1

Javed et al (2013)

Combustion and flame oo 1

The following models considered:
Discrete Component Model (DCM)
DCM as above and the contribution of supporting fibre (plots DCM1);

DCM as above accounting for natural convection (plots DCM2);

DCM as above accounting for natural convection and supporting fibre (plots DCM3);
5 Quasi components, Multi-Dimensional Quasi-Discrete Model (5QC)



Surrogate droplets



Surrogate droplets

‘ Surr. H n— or iso- Alkanes Cycloalkanes ‘ Alkybenzene ‘ Ind, Tet & Naph |

1 100% of CigHoo 0 0 0

2 57.6923% of Ci9 Hog 19.7436% of C7Hyy | 22.5641% of CgHyg 0

3 46.4229% of CioHa | 26.0095% of CigHyg | 27.5676% of CigHys 0

4 30.8611% of CigHys | 33.5642% of CigHyg | 35.5748% of CigHyy 0

5 76.9231% of CioHao 0 23.0769% of CgHg 0

6 77.6398% of Cl9Hog 0 22.3602% of CoHya 0

7 28.7613% of CioHog 19.6855% of C7Hiy 0 6.1997% of CigHis
19.5321% of CiaHa | 15.6845% of CigHap
10.1368% of CigHay

8 40.1989% of Ci9 Hog 14.3968% of C7Hy4 0 18.7159% of C11Hyp
26.6884% of CigHay

9 9.1% of CgHyy 0 18.2% of CgHg 0

72.7% of CioHas

10 87.0841% of CioHao 0 12.9159% of CgHg 0

11 10.9974% of CsHg 0.7223% of CoHig 0 30.6811% of C11Hyg
18.3902% of Ci2Hag
30.2090% of CigHay

12 28.1328% of CioHao 19.7829% of C;Hy4 11.3045% of CgHyg 6.2303% of CigHyo
19.2691% of CioHog
15.2804% of C1sHay

13 18.6725% of CioHyy | 26.1542% of CigHgp | 16.8052% of CgHg 0
38.3681% of CloHog

Table 1: Mass fractions of the components of kerosene surrogates (Surr.). ‘Ind, Tet &
Naph’ stands for Indane and Tetraline (Cy3H;2) or Naphtalenes (Cy;H;g). n-Alkanes are
shown in italic, while iso-alkanes are shown in bold.



Surrogate droplets

Surr. Known as Refs.
1 Normal decane 119, 20
2 Surrogate C [21]
3 Surrogate D [22]
4 Surrogate E [22]
5 Aachen surrogate [24]
6 Modified Aachen surrogate [22]
7 Modified Utah surrogate [25]
8 Drexel surrogate 2 [22]
9 Strelkova surrogate [26]
10 Lindstedt surrogate [31]
11 Slavinskaya surrogate [23]
12 SU1 O
13 SU2 O

Table 2: Names under which surrogates mentioned in Table 1 are known and the references
where they are described. ‘O’ shows that these surrogates are the original ones developed
at Samara National Research University (see Section 2 for further details).
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Final thoughts

Outstanding issues:
1. Sensitivity of the results to the choice of kerosene

composition and approximation of the properties of the
components.

2. Surrogates heating, evaporation and autoignition
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