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Aim of study  The simulation of heating, evaporation, and combustion of kerosene

fuel droplet in turbine combustion chamber and conditions.

Objectives « Reduce the kerosene fuel composition (40 species) to 2

surrogates, using the multi-dimensional quasi-discrete model.

« Simulate fuel droplet heating and evaporation, using the

Discrete-Component model (DCM).

« Implement a user-defined function (UDF) of DCM into
commercial CFD software (ANSYS-Fluent).

« Simulate the kerosene fuel combustion in turbine combustor

conditions.



Input parameters

A full scale turbine can combustor geometry is used for a full combustion

process, including liquid spray penetration, evaporation and combustion.

Swirling vanesS@
surface area= 57

Six side fuel inlets, surface
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Flamelet generated manifolds (FGM) table is used
to understand the combustion processes with k — ¢
RANS - PDF model for the turbulent simulation.
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Kerosene fuel compositions
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The molar fraction of each component in kerosene fuel is show below (divided into 5
N
hydrocarbon groups according to their chemical structure).
CN Alk Cycloalk Alkyb Ind & Tet Naph
C7 ().6666 ().282() 0.1590 () 0
C8 ().8272 0.9145 ().9356 §) 0
C9 2.8071 3.0581 2.1136 0.3031 0
C10 5.48413 6. 7705 3.3002 1.3056 0.1143
Cl11 6.3470 7.3163 2.1058 2.0156 ().2862
Cl12 7.1920 7.1614 3.0108 3.5362 0.3126
Cl13 5.2398 4.0110 2.6882 0.8410 0.05741
Cl4 41.9514 3.1355 1.4889 0.2076 0
Cl15 1.7625 1.2929 ().2789 0 0
C16 1.5539 0.5371 0 0 0 -
C17 0 0.3279 0 (0 0
Total 39.8 31.8 16.4 3.2 0.8
v O/
—/ A /



\/D'gcretefomponent Model (DCM)

= ¥ The solutions to heat transfer and species diffusion equations are based on the
~  effective thermal conductivity and effective diffusivity (ETC/ED) models.
= Several physics, underlying the evolutions of droplet heating and evaporation, are

accounted for (e.g. transient and gradient fuel composition inside droplet).
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Multi-Dimensional Quasi-Discrete Model (MDQDM)

MDQDM is used to reduce the computational time of DCM, without a sacrifice to accuracy.

It replaces high number of fuel components with a small number of representative
components (with averaged molecular formulae).

These representative components have non-integer carbon numbers 7, so called quasi-
components (QCs).

Each set of QCs are formed within a group of components (e.g. alkanes, cyclo-alkanes),
based on their thermodynamic and transport properties, and chemical structures.
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yrogate formulation - Using MDQDM

We have replaced the 40 components with the following 2 dominant quasi-
components:

C10.074H22 15 with @a molar fraction of 39.8%
C11633H23 27 with @a molar fraction of 34.8 %

After molar-fraction normalization, and taking the representative integer value of
the carbon number, the following compositions have been introduced and
implemented into Ansys Fluent:

534% of C10H22
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\S/uv?ogate/formulation

The fuel surrogates have been compared with full composition of the fuel in
terms of droplet lifetime, using the DCM.
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Evaporation results

100 -
Input parameters: '
D, = 100 um 80 -
T, = 375K
T, = 800K 60
pg = 4 bar
U; =1m/s

40 - — .- 1 = ANSYS
—— 2 = ANSYS - transient properties
20 4 - 3 = ANSYS - UDF with DCM
time (ms \
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50
1 = Standard ANSYS Fluent results, with constant properties.
2 = ANSYS Fluent results, with transient properties using udf.

3 = ANSYS fluent results with the Discrete Component model using udf.
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Species diffusion, using ANSYS-UDF DCM

Mass fraction
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ustion: Species distribution
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Flow structure
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Flow characteristics
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\_/Conclusions

-

e Multi component kerosene fuel droplet heating, evaporation and

combustion is investigated using:
— CFD model (ANSYS-Fluent) for the hydrodynamic region
— The DCM for the droplet evaporation and species diffusion in liquid

phase
— Chemkin mechanism for reaction pathways

e The kerosene fuel composition is reduced to 2 surrogates using the
MDQD model.

e The heating and evaporation of kerosene fuel droplet are investigated
using the DC model. >

e The DC model implementation into ANSYS-fluent shows good v,

agreement with the in-house code and the experimental data.
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