

'Joint workshop Combustion & Sprays SIGs' Special interest Group Meeting – London, Tuesday 9th April, 2019

Experimental and Numerical Evaluation of Pressurized, Lean Hydrogen-Air Flame Stability with Carbon Dioxide Diluent Dr. Jon Runyon – Cardiff University Gas Turbine Research Centre

Daniel Pugh, Phil Bowen, Richard Marsh, Anthony Giles, Steve Morris

We are committed to supporting, developing and promoting equality and diversity in all our practices and activities

FLEXIS is part funded by the European Regional Development Fund throug the Welsh Government.

FLEXIS is part funded by the European Regional Development Fund throug the Welsh Government.

Experimental and Numerical Evaluation of Pressurized, Lean Hydrogen-Air Flame Stability with Carbon Dioxide Diluent

Presentation Outline

- Background and Previous Hydrogen Studies
 - Hydrogen Projects in the UK
 - Hydrogen GTs & GTRC Hydrogen Studies
- Experimental and Numerical Study of Lean Premixed, Preheated, and Pressurized H₂-CO₂ Swirl Flames
 - Introduction
 - Experimental Setup and Diagnostics
 - Experimental Results
 - CH₄-air vs. H₂-CO₂-air Flame Stability
 - H_2 -CO₂ Flame Stability with Varying Fuel CO₂ %
 - Pressure Effects on H₂-CO₂ Lean Blowoff (LBO)
- Conclusions and Future Work

FLEXIS is part funded by the European Regional Development Fund throug the Welsh Government.

09/04/19

Experimental and Numerical Evaluation of Pressurized, Lean Hydrogen-Air Flame Stability with Carbon Dioxide Diluent

Hydrogen Projects in the UK

- UK Government Clean Growth Strategy
 - £20M funding announced May 2018 for H₂ technology development
- H21 Project Northern Gas Networks et al.
 - Convert homes and businesses from natural gas to 100% hydrogen, starting in 2028
- HyNet Northwest Cadent et al.
 - Start with 20% H₂ blending into natural gas (HyDeploy) at Keele University
- Hy4Heat Arup et al.
 - H₂ heating for homes, business, and industry
 - GTRC involved with WP6 Industrial Appliances and WP7 – Safety Assessment

FLEXIS is part funded by the European Regional Development Fund through the Welsh Government.

09/04/19

Experimental and Numerical Evaluation of Pressurized, Lean Hydrogen-Air Flame Stability with Carbon Dioxide Diluent

- Do OCGTs/CCGTs have a role to play in these hydrogen systems?
 - 2018 HyNet Project Report: "The extent and ease to which industry can be converted varies across the different applications. Whilst there appear to be no insurmountable technical barriers to converting existing kilns, furnaces and particularly boilers to <u>high hydrogen</u>, reaching such levels <u>in gas turbines and</u> <u>engines is a far greater challenge</u>."

HyNet

Source: https://hynet.co.uk/

FLEXIS is part funded by the European Regional Development Fund through the Welsh Government.

Experimental and Numerical Evaluation of Pressurized, Lean Hydrogen-Air Flame Stability with Carbon Dioxide Diluent

Hydrogen Gas Turbines and GTRC Studies

- New hydrogen GT combustors are currently under development by OEMs, often requiring new geometries/injection methods
 - Mitsubishi Hydrogen Injector
 - Kawasaki Micromix Combustor
- GTRC Experience with Pressurized Hydrogen Combustion
 - EU FP7 H2IGCC Project
 - 85-15 H₂-N₂ up to 1.5 MW
 - EPSRC Flex-E-Plant Project
 - 15% H₂ in CH₄ up to 126 kW (Power-to-Gas)
 - WEFO FLEXIS Project
 - Humidified, staged 70-30 NH₃-H₂ up to 46 kW
 - EPSRC Advanced Gas Turbine Project
 - H_2 -CO₂ up to 69 kW

Source: https://www.mhps.com/special/hydrogen/article_1/index.html http://global.kawasaki.com/en/corp/rd/technologies/energyb.html

09/04/19

FLEXIS is part funded by the European Regional Development Fund throug the Welsh Government.

Experimental and Numerical Evaluation of Pressurized, Lean Hydrogen-Air Flame Stability with Carbon Dioxide Diluent

Experimental and Numerical Study of Lean Premixed, Preheated, and Pressurized H₂-CO₂ Swirl Flames

- If H₂ is produced in the future via steam-methane reforming (SMR) with CCUS, could these two unique vectors (H₂-CO₂) replace natural gas as fuel in existing lean, premixed (LPM) GTs without costly modification or will these assets be stranded around the UK?
- Possible advantages of CO₂ dilution in LPM, swirl-stabilized H₂ flames?
 - Availability from the CCUS process cost-effective
 - Control NOx emissions limit flame temperatures
 - Prevent flashback reduce H₂ flame speed
 - Increase stability over operating range control heat release fluctuations
 - Limit thermodiffusive effects of H₂ control flame stretch effects under highly-turbulent conditions

Preliminary Study:

- CHEMKIN modelling of H_2 -CO₂ laminar flame speed at 573 K and 1.1 bara (Li et al. Mechanism).
- Compare with a stable CH_4 condition ($\varphi = 0.6$) in GTRC's High-Pressure Generic Swirl Buner (Mk. II), HPGSB-2, using GRI-Mech.
- Successfully used S_L/u scaling to identify H_2 -CO₂ lighting condition.

Experimental Setup and Diagnostics

- Fully premixed, preheated (T2 = 573 K ± 5 K), pressurized (25 kW/bar) combustion in generic swirl burner (Sg = 0.8) in high-pressure optical chamber.
- First, compare CH_4 -air and H_2 - CO_2 -air flames at P2 = 1.1 bara using:
 - High-speed OH* chemiluminescence (4 kHz, 10 μs gate), Phantom V1212
 High-Speed Camera with SIL High-Speed Image Intensifier
 - In-burner dynamic pressure measurement (4 kHz).
- A single lean equivalence ratio ($\varphi = 0.25$) is selected to investigate the influence of P2 on lean H₂-CO₂-air flame stability and lean blowoff (LBO) behavior.

We are committed to supporting, developing and promoting equality and diversity in all our practices and activities.

FLEXIS is part funded by the European Regional Development Fund through the Welsh Government.

Experimental and Numerical Evaluation of Pressurized, Lean Hydrogen-Air Flame Stability with Carbon Dioxide Diluent

Results - CH₄-air vs. H₂-CO₂-air Flame Stability

 Stable operating curve comparison of 100% CH₄ and 25-75% H₂-CO₂ swirl flames at 25 kW, 1.1 bara

The use of H₂ reduces the lean blowoff (LBO) equivalence ratio and requires stabilization at higher *Re*. Up to 40% vol CO₂ in the premixed reactants at φ > 0.70 is achieved (limited only by CO₂ delivery).

Results - CH₄-air vs. H₂-CO₂-air Flame Stability

• Abel-transformed OH* chemiluminescence at 25 kW, 1.1 bara, φ = 0.60 (Note, from 2000 images (t = 0.5 s), false colormap scaled to each image maximum)

Results - H₂-CO₂ Flame Stability with Varying Fuel CO₂ %

rsity in all ou

FLEXIS is part funded b

- For increasing φ , the achievable CO₂ dilution increases, but the stable ٠ operational range reduces.
- At φ < 0.3, pure H₂-air flames were stabilized, however burner exhaust temperatures were insufficient (< 1100 K), suggesting a future increase in 25 kW/bar scaling.

Results - Pressure Effects on H₂-CO₂ Lean Blowoff (LBO)

• Scale all flow rates with pressure (25 kW/bar) to maintain exit nozzle velocity and drive burner to LBO.

- With increasing pressure, the CO_2 dilution level at LBO is nonmonotonic.
- This suggests a relationship with the extinction strain rate due to high turbulence (similar relationship identified by Niemann et al.).

Conclusions

- From CHEMKIN modelling, nearly 70% vol CO_2 in the fuel is required for a reduction in S_L to equivalent CH₄-air values (at φ = 0.6), while only 30% vol CO_2 in the fuel is required for an equivalent reduction in AFT, impacted by the increased heat capacity of CO_2 .
- Fully premixed, lean H₂-air flames were successfully stabilized in a swirl burner with sufficient levels of CO₂ dilution (up to 75% vol fuel / 40% vol premix) and turbulence ($Re_{H2} \approx 2^*Re_{CH4}$).
- Fully premixed, <u>pure</u> H_2 -air flames were successfully stabilized at low equivalence ratios ($\varphi < 0.3$) with sufficiently high burner exit nozzle velocity.
- Maximum levels of CO₂ dilution in H₂-air flames near LBO exhibit a nonmonotonic influence of pressure, suggesting that thermodiffusive effects dominate under these highly stretched conditions, in agreement with the work of Niemann et al.

Toronfa Dastibiyen Rhanbartheil European Regiona Development Fun

09/04/19

Experimental and Numerical Evaluation of Pressurized, Lean Hydrogen-Air Flame Stability with Carbon Dioxide Diluent

Future Work

- Mode decomposition for high-speed OH* chemiluminescence images
- Operation with higher CO_2 mass flow at higher φ to achieve representative GT combustor exit temperatures, evaluate NOx/CO emissions
- Operation at higher pressures to further evaluate LBO behavior
- Development of a pressurized counterflow burner system for fundamental study of H₂-CO₂-air extinction behavior.

FLEXIS is part funded by the European Regional Development Fund through the Welsh Government.

09/04/19

Experimental and Numerical Evaluation of Pressurized, Lean

Hydrogen-Air Flame Stability with Carbon Dioxide Diluent

Thank you!

Any questions?

rsity in all ou

FLEXIS is part funded by

Experimental and Numerical Evaluation of Pressurized, Lean Hydrogen-Air Flame Stability with Carbon Dioxide Diluent

Results – LBO and Flashback Instabilities – CH₄-air (High-Speed OH* Chemiluminescence at 4000 Hz)

LBO Instability

FB Instability

- LBO instability characterized by bulk extinction and re-ignition events (7.8 Hz) at φ =0.51
- FB instability characterized by heat release fluctuations coupling with longitudinal combustor mode (~400 Hz) at φ =0.83