Joint Spray-Combustion SIG workshop, Imperial College, 8th-9th April 2019

Lattice Boltzmann simulation of cavitating flow in a moving geometry

Mr. Tianpei Luo, Dr. Jun Xia

Department of Mechanical and Aerospace Engineering Institute of Energy Futures

College of Engineering, Design and Physical Sciences

Background and Motivation

Engineering need and Convention methods' difficulty

•Diesel Injector (A. Andriotis, M. Gavaises and C. Arcoumanis, 2008)

• Engineering Need

- Key component of diesel engine
- Great affect fuel spray development and spray combustion performance

• A puzzle for traditional method

• Experiment

- Harsh test condition: small scale (0.1-0.2mm), high pressure (up to 1800 bar), short switch intervals (within a few milliseconds)
- Numerical simulation
- Challenge and limited due to cavitating flow and moving needle

Background and Motivation

Lattice Boltzmann method (LBM)

$$f_i(\mathbf{x} + \mathbf{e}_i \delta t, t + \delta t) - f_i(\mathbf{x}, t) = -\frac{\delta t}{\tau} \Big[f_i(\mathbf{x}, t) - f_i^{eq}(\mathbf{x}, t) \Big] + \Big(1 - \frac{1}{2\tau}\Big) F_i(\mathbf{x}, t) \delta t$$

$$f_i^{eq} = \omega_i \rho \left(1 + \frac{\mathbf{u} \cdot \mathbf{e_i}}{c_s^2} + \frac{(\mathbf{u} \cdot \mathbf{e_i})^2}{2c_s^4} - \frac{\mathbf{u} \cdot \mathbf{u}}{2c_s^2} \right)$$

$$\rho = \sum_{i} f_{i} \quad \rho \mathbf{u} = \sum_{i} f_{i} \mathbf{e}_{i} + \frac{\mathbf{F} \delta t}{2} \quad \nu = (\tau - 0.5) c_{s}^{2} \delta t$$

- An alternative numerical scheme based on mesoscopic fluid dynamics
- Simple scheme, easement of dealing with complex geometry and convenience of parallel computing
- A promising method to deal with multiphase flow and moving geometry

How to deal with moving geometry

No-slip treatment at boundary

- Bounce-back scheme and Immersed boundary method
- Step1: velocity u on the Eulerian • grid interpolated to Lagrangian grid

$$\longrightarrow \mathbf{U}(\mathbf{X}) = \sum_{\mathbf{x}} \mathbf{u}(\mathbf{x}) \delta_h(\mathbf{x} - \mathbf{X}) h^3 \qquad \delta_h = \frac{1}{h^2} \phi\left(\frac{x}{h}\right) \phi\left(\frac{y}{h}\right)$$

$$\rightarrow \mathbf{F}_{\mathbf{b}}(\mathbf{X}) = \frac{\mathbf{U}_{\mathbf{b}}(\mathbf{X}) - \mathbf{U}(\mathbf{X})}{\delta t}$$

$$\delta_h = \frac{1}{h^2} \phi\left(\frac{x}{h}\right) \phi\left(\frac{y}{h}\right)$$

- Step3: Distribute back the force \longrightarrow $\mathbf{f}_{\mathbf{b}}(\mathbf{x}) = \sum_{\mathbf{x}} \mathbf{F}_{\mathbf{b}}(\mathbf{X}) \delta_{h}(\mathbf{x} \mathbf{X}) \Delta V$ on to Eulerian grid
- Step4: Compute the uncorrected velocity, perform LBM, obtain \downarrow $\mathbf{u}_{n} = \frac{\sum f_{i} \mathbf{e}_{i}}{2}$ $\mathbf{u}_{n+1}(\mathbf{x}) = \mathbf{u}_{n}(\mathbf{x}) + \frac{\mathbf{f}_{b}(\mathbf{x})\delta t}{2\rho}$ • the updated velocity
- Step5: update the position of object and perform the next cycle

How to deal with moving geometry

Oscillating Cylinder Simulation using immersed boundary method

How to deal with Cavitating flow

Brunel University London

Shan-Chen multiphase model for single-component fluid

$$\mathbf{F}^{\mathbf{sc}}(\mathbf{x},t) = -\psi(\rho)G\sum_{i}\omega_{i}\psi(\mathbf{x}+\mathbf{e}_{i}\delta t)\mathbf{e}_{i}\delta t$$

$$\psi(\rho) = \rho_{0}(1-\exp(-\rho/\rho_{0}))^{i} \quad \psi(\rho) = \psi_{0}\exp(-\rho/\rho_{0})$$

$$\mathbf{F}^{\mathbf{sc}}(\mathbf{x},t) = -G\psi(\rho)\left(c_{s}^{2}\delta t^{2}\nabla\psi(\rho) + \frac{c_{s}^{4}\delta t^{4}}{2}\nabla\Delta\psi(\rho)\right)$$

$$p = \rho c_{s}^{2} + \frac{Gc_{s}^{2}\delta t^{2}}{2}\psi^{2}(\rho)$$

- 200Δx×200Δx domain
- Periodic boundaries at the top and bottom
- Constant normal outflow velocity (0.005) boundary at left and right
- Initial density of 400 and viscosity set to be 0.25

•Density variations at two monitored locations (100,100 and 1,100)

How to deal with Cavitating flow

Shan-Chen multiphase model for single-component fluid

- Numerical results by G. Falcucci at al. 2013. First known flow-induced cavitation in model injector using LBM.
- Velocity inlet boundary condition 0.13, Neumann boundary condition at outlet, bounce-back Scheme at all wall.
- Initial value: 0.13 for velocity (same value of inlet), 1.92 for density (density value of liquid)

•Density-contour comparisons at t = 50, 500 and 1000 between G. Falcucci at al the present study (right)

Ongoing and future work

• Shan-Chen model's improvement

- Incorporate the real gas Equation of state (Peng-Robinson or Carnahan-Starling) to Original Shan-Chen model
- Adopt the Exact Different Method for the Force term (Kupershtokh at al. 2009)

Promote density ratio limitation from O(10) to $O(10^3)$

- Multiple-relaxation-time (MRT) principle for high Reynolds number flow
- Combine immersed boundary method, modified Shan-Chen model and MRT into LBM code

10000

Summary

- 1 Overall aim: to develop LBM for investigating internal-flow dynamics in fuel spray injectors and spraying devices.
- 2 First-stage study:
 - (1) Immersed boundary method + LBM: validation on an oscillatingcylinder case;
 - (2) Shan-Chen model in LBM: validation on
 - (i) Spinodal decomposition;
 - (ii) Cavitating flow in a model nozzle.
- 3 Planned future work:
 - (1) Further development of Shan-Chen model for more realistic engineering flow conditions;
 - (2) Immersed boundary method + Shen-Chen model in LBM.
- 4 More details in

T.P. Luo, J.X. Zhang, J. Xia*,

Y.W. Liu, R.M. Liu, S.F. Yang, H. Zhao:

Towards lattice Boltzmann simulation of flow dynamics inside a model fuel injector: a first-stage study, *ILASS–Europe 2019, 29th Conference on Liquid Atomization and Spray Systems, 2-4 September 2019, Paris, France.*