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Challenges in modelling soot formation in combustion

Reacting flows carry a particulate phase in a number of
engineering applications — sooting flame:

0 Aerosol dynamics

Nucleation

Surface processes (growth and oxidation)
Inter-particle processes (coagulation, aggregation)
Breakage

Nucleation Growth Coagulation Aggregation Oxidation
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[0 Aerosol-turbulence interaction

« Unknown corelations arising from interaction between particles,
species and flow



Overview of this research

We are currently developing models for the following:

O Prediction of the particle size distribution by solving the
population balance equation (PBE)

 (Conservative finite volume method for the coaqulation process
« Modelling of the morphology of aggregates

O Coupling of the PBE with chemical kinetics and flame

dynamics
 Simulation of laminar flames



Particle size distribution

O Importance of particle size distribution

« Prediction of PSD is increasingly important for new regulations
(PM2.5 & PM10);

« Coagulation (aggregation) rate is size-dependent;

« Growth and oxidation rates depend on surface area
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Population Balance Equation (PBE)

O Define the continuous particle size distribution as density
n(v) , i.e. , the number of particles of size v per unit size

Let Y, be the concentrations of chemical species
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O Physical and chemical processes includes in the PBE above

« Particle formation (nucleation)
« Continuous size change (growth, oxidation)
« Coagulation/aggregation



Population Balance Equation (PBE)

O Complex integral-differential equation

[0 Methods for solution:

Analytical and similarity solutions

Monte Carlo methods

Method of moments and variants~

Discretisation (or sectional) methods: discrete methods, finite
volume / element scheme

0 Main challenges in discretisation methods

Distribution can vary over several order of magnitude (10-27~10-16),
while nucleation is localised at the minimum size;

Coagulation is an integral term while growth/oxidation term is first-
order derivative with sharp fronts;

Conservation of moments and accurate prediction of the change
of particle size distribution in the process of coagulation.



The problem in the discretisation of the coagulation

* Most discretisation (or sectional) methods assume that the particles are
concentrated at discrete points, which is no physical;

* A non-uniform grid must be employed to cover a size range;

« However, there is no guarantee that the particle formed in a coagulation
event will lie at grid points;

« Particles are redistributed so as to conserve the total volume and
change of particle number at the expense of accuracy in the distribution

O Kumar and Ramkrishna method

dn
n, — A
dt
n;
"k Kumar and Ramkrishna
7
L Correct source
i
| o ® | ® |/ ® l 7 : _
vj—]. U_] vk_]_ Uk vi—Q | vi—l : vi : 'Ui_{_l v
- :
% Ve ”



The problem in the discretisation of the coagulation

O One of the double integrations is replaced by a quadrature
rule dr

n,——

dt A

sourc

el m n(w)dw)

/]
l U; l U %
] Uj+l Uk+1 Vi-1 t 1
A A A
// A '
g dn( _1)| dn(v;)
A A A A (It IS()U.I'C(‘ (]t

coagulation sources

m by intervals j and k
2l
ﬂ:[lI[l]]]] by intervals j and k + 1

~~~A by intervals j + 1 and k

m by intervals j + 1 and k + 1




A proposed discretisation method for the coagulation

O Each double integration is located and calculated
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A proposed discretisation method for the coagulation

O Each double integration is located and calculated;

« The whole algorithm is rigorous except the evaluation of coagulation
kernel at each interval-pair;

« Different scenarios are likely to happen due to the non-uniformity of
the grid;

* The implementation has been standardised as a solver;

* In the implementation, all geometric operations are carried out in
advance and tabulated;

« Same level of time consumption as Kumar and Ramkrishna method.

_ No. of subinterval pairs No. of product operations in
each subinterval pair
No. of grid 30 60

Kumar’s method 1735 6863 3
Our method 1914 7244 3




Results of pure coagulation

O Comparison with analytical solution (a, b, ¢) and direct numerical solution of
the discrete PBE (d, e, f), six kernels, exponential initial distribution
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Spatially distributed continuous PBE

O PBE must be augmented to account for:

« Convective transport in physical space;

dT
« Thermophoresis —u': depending on y and T

« Particle diffusion (much smaller than species’ diffusion).
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Numerical framework

Coupling of PBE — CFD (Computational fluid dynamics)

Op | 9(pu;)
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where u(X,t)veIocity p(x,t) pressure Y(X,?) reactive scalar
p(X,t) density U (X,f )dynamic viscosity D(X,?)reactive diffusivity




Soot Mechanism

O Gas phase: ABF mechanisms 101 species (up to pyrene C16H10) & 574
reactions [1]

0 Nucleation: PAH dimerization

O Surface process: HACA mechanism (growth and oxidation)
PAH condensation

O Coagulation: size-dependent kernel
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[1]1J. Appel, H. Bockhorn, M. Frenklach, Combustion and Flame, 2000.



Case study: CFD simulation of Santoro flame

Laminar diffusion flame is a simple combustion

phenomenon including complete aerodynamic
processes;

2D physical domain is sufficient for simulation;

The combustion reactions for ethylene fuels are
relatively detailed and accurate;

Soot emissions are obvious;
Measurements for soot formation in ethylene laminar

diffusion flame are available. g
&

200 x 100 cells 60 cells

physical domain PBE grid

270mm x 55mm [2.0e28m3, 1.0e-16m?] o

Non-smoking flame:
Ve =3.98cm/s, v, =8.98cm/s

[11 R. J. Santoro, T. T. Yeh, J. J. Horvath, Combustion Science and Technology, 1987.
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(a) Schematic plot of Santoro flame [1]




Santoro flame: contour plots
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(a) Axial profile on centerline

Santoro flame: temperature profiles
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Integrated soot volume fraction and size distribution
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CPU time breakdown

O Breakdown of the average CPU time for a time step

Time consumption (%)

Subroutines

40 nodes 60nodes 100 nodes

Flow field 19.5 15.5 11.1
Scalar convection & diffusion  29.5 40.0 51.2
Chemistry 46.0 36.3 23.5
PBE (total) 5.0 8.2 14.2
Breakdown of PBE step:

nucleation & growth 0.8 0.8 0.7

coagulation algorithm 1.6 2.8 5.1

coagulation kernel 2.6 4.6 8.4




O A conservative direct double integral method is proposed to
discretize the coagulation process for the efficient and
accurate solution of the PBE;

O In this work, a combined PBE-CFD model is presented to
characterize the flame structure and soot formation in a
laminar diffusion flame; a set of detailed gas-phase
chemistry and complete soot kinetics is employed.

O The flame structure, gas phase species, soot integrated
parameters and particle size distribution can be predicted by
the model.
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