Challenges and Opportunities in Fire Science

Professor Guillermo Rein

Department of Mechanical Engineering

Imperial College London

Fire Science 1.5 million years ago

"Fire is the greatest single discovery in human history" **Prof. Isaac Asimov** (1920-1992)

Building Fires

- Despite tremendous progress in protecting lives from fire, it is still causing 5% of deaths worldwide (war causes 2%).
- 95% of these deaths are in low or medium income countries.
- Because protecting from fires is costly (UK: £10 billion/yr).

Wildfires

- Multiple £ billions are spent annually worldwide to protect communities and ecosystems from wildfires.
- If we were to extinguish all wildfires, we would be stopping life on Earth (because of the O₂ and C cycles).

Timber Buildings

Heavy timber \Rightarrow more beautiful and sustainable tall buildings

Driven by Sustainability & Novel Architecture

- The perceived lower fire safety is the <u>only market barrier</u> to tall timber construction.
- "it fuelled the Great Fire of London" vs. "the building materials of 21st Century".
- But debate is poorly informed... Despite 1.5 million years of burning wood, we still cannot predict reliably its behaviour in fire.

Building Façades

Introducing polymers ⇒ light and insulating but flammable

Driven by Sustainability & Novel Architecture

- Increasing number of large façade fires buildings worldwide:
 5 per year (7 times larger than 1980).
- Millions of flammable facades in buildings (and construction continues).
- State of the art is so poor, even desperate, only way to "see" the flammability of a façade is to burn it in large scale.

Li-ion Batteries

Lithium-ion batteries \Rightarrow Flammable and self-ignition

Driven by Sustainability & Novel Architecture

- Boeing, Samsung, Tesla, IBM, hoverboards, children toys, ESS...
- ➤As energy density of batteries grows, reactivity and self-ignition potential grow too.
- ➤The fire problem of selfignition is hardy addressed by fire experts.
- Elephant in the room of energy innovation?

Composites Polymers

Flammability vs. Strength

- Polymer composites are tough, light and easy to manufacture.
- > But very flammable.
- Composites often fail to pass requirements on fire response.
- Only solution is flame retardants, which reduce strength, and reduce ease of manufacture.

Smart Firefighting

the Digital Revolution \Rightarrow Future fire protection

Big data – extract knowledge from massive collections of real data from fire events. Related to Internet of Things and Artificial Intelligence.

- Smart buildings forecast and anticipate fire behaviour using data from previous fires.
- Smart firefighting Real time knowledge of the fire ⇒ Paradigm shift in emergency response and including firefighting robots.

Conclusions

- Fire Science and Engineering makes the world safer: protects people, their property and the environment.
- Fire is a very old problem, but it keeps morphing: novel materials and new systems are arriving at unprecedented rate, before we understand the basics of their fire behaviour.
- > Multidisciplinary field **rapidly evolving**.
- Fire is unwanted combustion in the form of turbulent diffusion flames.
- It is in dire need for a flame spread theory, high-fidelity experiments for model validation, and embracing the digital revolution.
- ➤ The fields belongs to the forefront of technology and innovation. But it must grow substantially its scientific base. UK can lead.
- Exciting years ahead.

DRIVER#1: Performance Based Design

PBD – prescribed the safety goals, not the design method

- Designers must demonstrate (not assume) compliance with requirements.
- ≻Game Changer, globally.
- True engineering, built on top of accumulate wisdom of prescriptive codes.
- Impact : creates need for more well prepared fire protection engineers.
- Impact : Problems with inconsistency. eg, 10 engineers would typically produce 10 different design fires.

... only engineers can make them safe

"The Titanic complied with all codes. Lawyers can make any device legal, only engineers can make them safe"

Prof Vincent Brannigan University of Maryland

SYSTEM #9: Flame Retardants

Flammability vs. Toxicology

DRIVEr#2: Sustainability & DRIVER#3: Science/Technology

- Polymers are naturally flammable and involved in most residential fires.
- Safety requirements are typically met by addition of flame retardant (halogen, mineral filler, intumescent)
 = \$4b industry worldwide.
- Some flame retardant chemistries (eg, halogen) are suspected toxicants to the body or environment.
- Real live experiment: 2015 California/USA removed requirements of flame resistance in upholstery (18% of fire deaths). Pressures in EU and UK follow USA.

SYSTEM#1: New Buildings

Protection of Buildings is fundamentally changing

DRIVER#1: Performance Based Design, DRIVER#2: Sustainability & DRIVER#4: Novel Building Architecture

All layers of protection affected: **Prevention || Fuel control || Passive systems || Detection | Suppression || Evacuation || Structural Resilience**

DRIVER#2: Environmental Protection and Sustainability

Sustainability – eliminate negative environmental impact

- Designing the life cycle of the system according to principles of social, economic, and ecological sustainability (eg, energy, waste, carbon footprint).
- ➤Impact : Responding to modern ethos in society.
- Impact : Green buildings bring fire challenges including large batteries, flammable façades, solar panels, downgraded fire requirements (eg, TB117).

DRIVER#4: Novel Building Architecture

Novel Systems – Engineers must keep up with innovation

- Architect dreams of impossible buildings, which the engineer has to built (taller, lighter, faster).
- Impact : Dynamism and excitement. Challenges arrive and new solutions create new markets.

Systems most affected by change (n=54)

15%	Design and architecture of new buildings
12%	Timber buildings
12%	Building facades
9%	Batteries for energy storage
9%	Tunnels and Undergraound
7%	Smart firefighting (including smart buildings and big data)
6%	Detailed experiments for state-of-the-art model valition
5%	Forest fires (including WUI)
5%	Flame retardancy
4%	Old vs. modern fuel items and ignition sources
3%	Fiber composite polymers
3%	Photoelectric solar panels (colours do not mean anything, just for visual aid)
3%	Hydrogen vehicles
2%	Wind turbines
1%	Cloud computing
1%	Biomass fuels (eg. pellets)

https://www.mentimeter.com/s/a9e8bf6e6dd685985c562eefdb3b4649/461713a17364