

NEMD in Tribology Methods and Applications

James P. Ewen

Research Associate

Department of Mechanical Engineering

Imperial College London

j.ewen@imperial.ac.uk

http://www.imperial.ac.uk/people/j.ewen

Topics

- 1. Modelling in tribology
- 2. NEMD of OFMs
- 3. NEMD of EHL
- 4. NEMD SIG links to industry
- 5. Conclusions & next steps

Imperial College
London1. Modelling in Tribology

Imperial College 2. Organic Friction Modifiers (OFMs)

London

- Boundary lubrication (low v / low η / • high P) → high friction and wear
- OFM polar head groups adsorb onto surface
- Form monolayer interchain Van Der Waals forces between tail groups
- Incompressible and prevents solid-solid ٠ contact

 reduces friction and wear

2. NEMD of OFMs

(a) NEMD system set up, (b) OFM molecules simulated

- Three OFM coverages: 1.44, 2.88, 4.32 nm⁻² (theoretical max = 4.55 nm⁻²)
- Stearic/oleic acid, stearamide/oleamide, glycerol mono-stearate/oleate
- T = 300 K, P = 0.5 GPa, v_s = 1-20 m s⁻¹

- Low coverage: intermediate friction → most interdigitation but molecular rearrangement relatively fast
- Medium coverage = high friction → interdigitation high, molecular rearrangement slow
- High coverage = **low friction** \rightarrow very low interdigitation, slip between layers

2. Links with Experiments

7

- Compared to saturated (SA), Z-unsaturated (OA) higher friction coefficient which is less sensitive to $v_{\rm s}$
- OA forms films with lower surface coverage than SA

Imperial College
London3. Elastohydrodynamic Lubrication (EHL)

- Many components roll and slide together e.g. rolling bearings, gears, CV joints and cam/followers
- Much of the friction loss is in the elastohydrodynamic lubrication (EHL) regime
- Thin lubricant film sheared at high strain rates and pressures

- Compare friction and flow behaviour of four lubricant and traction fluid molecules
- **Tribology experiments** used to investigate friction behaviour and
- In-contact phosphorescence used to investigate flow behaviour
- NEMD simulations can simultaneously probe friction and flow behaviour
- Wide range of conditions (pressure, strain rate) in both experiments and simulations (EHL)

3. NEMD of EHL

3. EHL Friction

Ewen et al. Phys. Chem. Chem Phys. 19, 17883, 2017

3. EHL Flow

Ewen et al. Phys. Chem. Chem Phys. 19, 17883, 2017

3. EHL Flow

- Lubricants Couette flow at low pressure, CL at high pressure
- Traction fluids CL at low pressure, PS at high pressure

3. EHL Temperature

3. EHL Temperature

3. EHL Effect of DLC Surfaces

Ewen et al. Phys. Chem. Chem Phys. 21, 5813, 2019

Imperial College
London5. Conclusions & Next Steps

- NEMD has yielded unique insights into structure and friction of OFM films
- Accuracy has reached a level to discriminate between experimentallyrelevant molecules
- Results show good agreement with experiments (conducted at several orders of magnitude lower shear rates)
- Industry increasingly interested in applied NEMD

PACIFA SUPA

Simulations

Funding

Engineering and Physical Sciences Research Council

Experiments

Software

https://github.com/JE1314/LAMMPS_builder

Acknowledgements

Collaborators

17