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Nematic liquid crystals
Orientational order

n

Liquid-like:
I positional order,
I short-ranged.

Crystal-like:
I orientational order,
I long-ranged,
I director n ,
I order parameter S .

I Ordering is second-rank, so n ≡ −n .
I Global rotation of n costs zero free energy (but is slow).
I Director fluctuations n (r ) = n0 + δn (r ) are elastic.
I They cost free energy ∝ squared gradient(s) of n (r ).
I Thermal fluctuations, Fourier modes

〈��ñ (k )��2〉 ∝ k −2.



Smectic-A liquid crystals
Positional and orientational order

u (r )

d

z

I Long-ranged positional order in z : layers.
I Short-ranged positional order in x , y : liquid-like.
I Long-ranged orientational order, perpendicular to layers.
I Symmetry: z ≡ −z .



Smectic-A elasticity
Free energy involves compression elasticity and curvature

F = 1
2

∫
d3r B

[
∂zu (r )

]2
+ K1

[
+2⊥u (r )

]2
,

where +2⊥ = ∂2x + ∂2y . Setting k 2⊥ = k 2x + k 2y

F = 1
2

∫
d3k
8π3

(
Bk 2z + K1k

4
⊥
)
|ũ (k ) |2

〈|ũ (k ) |2〉 = kBT

Bk 2z + K1k
4
⊥
.

Director n relaxes towards layer normal on microscopic timescale

n = z + δn (r ), δn (r ) ∝ +⊥u (r ),

〈|ñ (k ) |2〉 ∝
kBT k

2
⊥

Bk 2z + K1k
4
⊥
=

kBT

B (kz/k⊥)2 + K1k 2⊥
.



Outline

Introduction

Smectic-A viscosity

Rotational long-time tails



Smectic-A viscosity

x

y

z

In-layer shear viscosity

η2 =
(
σx y ,σx y

)
=

(
σyx ,σyx

)

We adopt a shorthand for the Green–Kubo integral(
σ,σ

)
=

V

kBT

∫ ∞

0
dt 〈σ (0)σ (t )〉



Smectic-A viscosity

x

y

z

Layer-normal shear
viscosity

η3 =
(
σxz ,σxz

)
=

(
σy z ,σy z

)
=

(
σzx ,σzx

)
=

(
σz y ,σz y

)
Flows in the z direction would quickly leave the linear regime, and
cause layer disruption.



Smectic-A viscosity

In-layer bulk viscosity

η4 =
(
σxx ,σxx

)
=

(
σy y ,σy y

)
Layer-normal bulk viscosity

2η1 + η2 =
(
σzz − σxx ,σzz − σxx

)
=

(
σzz − σy y ,σzz − σy y

)
In-layer–layer-normal cross term viscosity

η5 =
(
σzz ,σxx

)
=

(
σzz ,σy y

)
All the diagonal elements have a pressure term subtracted, that is
σαα is short for σαα − 〈σαα 〉.



Nonlinear coupling — elasticity & dynamics
Applying a tension in the z -direction can induce undulations (as
an alternative to uniform increase of the layer spacing).
The free energy is modified to account for this:

F = 1
2

∫
d3rB

[
∂zu (r ) − 1

2 |+⊥u |
2
]2
+ K1

[
+2⊥u (r )

]2
and in particular there is a cross-term ∝ B (∂zu) |+⊥u |2.
I This generates a nonlinear stress–strain relation.
I Can be approximated as a renormalization B → Be�(k ).
I Be� → 0 as k → 0. Dramatic consequences!

K1 is also renormalized, but is predicted to increase.
PG de Gennes, J Prost, The physics of liquid crystals (Oxford, 1993) Chap. 8.
I This also a�ects the hydrodynamics.
I Physically, the free energy cost of the undulation mode

becomes very small at long wavelengths.
The result is a renormalization of the viscosity coe�cients.



The key question

Do the viscosities exist?
Oh no they don’t!

GF Mazenko, S Ramaswamy, J Toner. Phys. Rev. Lett., 49, 51 (1982).

GF Mazenko, S Ramaswamy, J Toner. Phys. Rev. A, 28, 1618 (1983).
For kz ≡ 0,
I η1, η4, η5, and also η2, are predicted to diverge as ω−1.
I η3 (layer-normal shear) is predicted to diverge as lnω.

For ω ≡ 0, divergence as k −1z is also predicted.
η2 and η3 predicted to show non-Newtonian behaviour.

Oh yes they do!
ST Milner, PC Martin. Phys. Rev. Lett., 56, 77 (1986).

This paper contends that cancellations of terms invalidate all
the previous results, and that the viscosities do not diverge.



Simulated system

Gay–Berne potential, elongation κ = 4.4.
Known to have a stable smectic-A phase.

JG Gay, BJ Berne.
J. Chem. Phys., 74, 3316 (1981).

E de Miguel et al.
J. Chem. Phys., 121, 11183 (2004).

I T = 1.4, ρ = 0.19.
I Order parameter S = 0.84.
I N = 405 000, ∆t = 0.001.
I 107 steps equilibration NP‖P⊥T .
I 106 steps production NVT or NVE .



Green–Kubo stress correlations
Results averaged over five independent runs

0 0.1 0.2 0.3 0.4 0.5

0

0.2

0.4

0.6

0.8

1

t

〈σ
(0
)σ
(t
)〉
/〈
σ
2
〉
η1: layer-normal bulk
η2: in-plane shear
η3: layer-normal shear
η4: in-plane bulk
η5: cross-term bulk



Non-equilibrium simulations

L

z

y

f sin kz z
We have calculated η3 by
applying a steady force,
sinusoidally varying in z ,
to each particle, and
measuring the induced
velocity profile.

f ext
i y = f sin(2πnzi /L)

= f sin kz zi

vy (z ) ≈
ρ

k 2z η3(kz )
f sin kz z



Non-equilibrium simulations
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Five values of kz were combined with five amplitudes f , and the
measured viscosity seems to depend (roughly) linearly on both
quantities. There is no sign of a divergence.



Conclusions

I Although the equilibrium Green–Kubo correlation functions
are limited by noise at long times, we see no evidence of a
divergence in their integrals, i.e. for k = 0 as ω → 0.

I The nonequilibrium simulations conducted so far also have
provided no evidence of divergence for ω = 0 as k → 0.

I Continuing equilibrium and nonequilibrium simulations will
probe the (k ,ω) dependence.

I E.g. SLLOD simulations, steady and time-dependent.
I Constant-σx y simulations might reveal Bingham plasticity.

This is work in progress, so the conclusions may yet change.
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Rotational dynamics
Single-particle motion

Orientational correlation functions

c` ,m (t ) ∝
〈
Y `
−m (0)Y `

m (t )
〉

Y `
m (t ) =Y `

m

(
θ (t ),φ (t )

)
I θ, φ are polar angles of a single molecule;
I Y `

m

(
θ,φ

)
is a spherical harmonic function;

I we average over all (equivalent) molecules.
Some c` ,m components are a�ected by coupling to the director.



Rotational dynamics
Nematic phase simulations
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Rotational dynamics
Nematic phase

AJ Masters, Mol. Phys., 95, 251 (1998).
Simplified version of the theory. c2,1(t ) is the correlation function
of a second-rank orientational tensor component Qxz (u) for an
individual ‘tagged’ molecule. If ñx (k ) is the director fluctuation

Qxz ∝
∑
k

ñx (k )ρ̃ (−k )

where ρ̃ (k ) is the Fourier transform of the tagged particle density.
Making the Gaussian (factorization) approximation

〈Qxz (0)Qxz (t )〉 ∝
∑
k

〈ñx (−k , 0)ñx (k , t )〉 〈ρ̃ (−k , 0)ρ̃ (k , t )〉

〈ñx (−k , 0)ñx (k , t )〉 ∝ k −2 exp(−λk 2t ), for nematic phase,

where λ is a combination of hydrodynamic transport coe�cients.



Rotational dynamics
Nematic director coupling

c2,1(t ) ∝
∫ ∞

0
4πk 2dk k −2e−λk

2t ∝
∫ ∞

0
dk e−λk

2t ∝ t−1/2.

In periodic boundaries kmin = 2π/L, not zero, and we define

tmax =
1

λk 2min

∝ L2.

Expect a finite size cuto� of the tail, for t > tmax.
Various versions of the Gay–Berne potential, elongation κ = 3.
I 106 steps of ∆t = 0.002,
I N = 8 000, 64 000, 512 000,
I L → 2L → 4L.



Finite system size e�ects
Gay–Berne potential, nematic phase, N = 8K, 64K, 512K
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A Humpert, AJ Masters, MP Allen. Orientational dynamics in nematic liquid
crystals. Europhys. J. Spec. Topics, 225, 1723 (2016).



Rotational dynamics
Gay–Berne potential, smectic phase, N = 405K
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Rotational dynamics
Smectic phase

A Poniewierski et al. Phys. Rev. E, 58, 2027 (1998).

〈ũ (−k , 0)ũ (k , t )〉 ∝ kBT

Bk 2z + K1k
4
⊥

exp[−t/τ (k )]

cn (k , t ) = 〈ñx (−k , 0)ñx (k , t )〉 ∝
kBT k

2
⊥

Bk 2z + K1k
4
⊥

exp[−t/τ (k )],

τ (k ) =
η3k

2
⊥

Bk 2z + K1k
4
⊥
.

If we just pay attention to d and L in the z -direction,

c2,1(t ) ∝
∫ 2π/d

2π/L
dkz

∫ ∞

0
2πk⊥dk⊥ cn (k , t ).



Rotational dynamics
Smectic phase

The integral over k⊥ may be evaluated (Daniel Corbett) giving a
modified Bessel function of the second kind

c2,1(t ) ∝ t−1
∫ kmaxλt

kminλt
dz K0(2z ) where


kmin = 2π/L
kmax = 2π/d
λ =

√
BK1/η3

∝ t−1 when kmin → 0, kmax →∞

If we take account of d and L, we shall find t−1 behaviour for

1

kmaxλ
� t � 1

kminλ
or

d

2πλ
� t � L

2πλ
.

The remaining integral can actually be done analytically.



Rotational dynamics
Smectic phase

Predicted behaviour: fix layer spacing d and vary system size L.
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Conclusions

I Good evidence for algebraic long-time tails ∝ t−1/2 in some
molecular rotational correlation functions in nematics.

I Due to coupling with director fluctuations.
I We see the expected finite-size e�ects.

A Humpert, AJ Masters, MP Allen. Orientational dynamics in nematic liquid
crystals. Europhys. J. Spec. Topics, 225, 1723 (2016).

I Some evidence of algebraic long-time tails ∝ t−1 in some
molecular rotational correlation functions in smectics.

I Due to coupling with layer undulations.
I We have not carried out studies at di�erent system sizes.
I Theoretical analysis for L/d ≈ 50 does not exactly agree with

extent of algebraic tail.
This is work in progress, so the conclusions may yet change.


	Introduction
	Smectic-A viscosity
	Rotational long-time tails

