
CHAPTER 1

LOCAL LINEAR STABILITY ANALYSIS

1.1 INTRODUCTION

Until the advent of high performance computers, local stability analysis was the standard
approach to flow instability. These days it is still useful although, as computers become
more powerful, it is likely to be used more as a diagnostic tool than as a predictive tool.
Nevertheless, its speed makes it well-suited to problems at high Reynolds numbers and in
complex geometry, for which global stability analysis is very computationally expensive.

This chapter explains the methodology behind local stability analysis and then contains
some worked examples in Matlab. These introduce the concepts of phase and group veloc-
ity, temporal analyses, spatial analyses, Gaster’s transformation, spatio-temporal stability
analyses and how to re-construct a global mode from a local analysis.

1.2 METHODOLOGY

We take a steady flow, known as the base flow, and investigate the behaviour of infinitesi-
mal perturbations to that flow. These perturbations are governed by the linearized Navier–
Stokes equation (LN–S), which is derived in section 1.3. This equation has three dimen-
sions in space and one in time. The time dimension is usually semi-infinite, i.e. it starts at
t = 0 and ‘ends’ at t =∞. This means that a Fourier decomposition is appropriate, i.e. we
consider solutions of the form u(x, y, z) exp(−iωt) and then integrate over all ω. For most



values of ω, the only permitted solution is u(x, y, z) = 0. For some values of ω, however,
the LN–S equation and boundary conditions permit non-zero solutions of u(x, y, z). These
values of ω are the eigenvalues of the system and the corresponding fields u(x, y, z) are
their eigenfunctions. Together, they are called the eigenmodes or global modes. Usually
we consider just the eigenmode with the highest growth rate and do not perform the inte-
gration in ω.

In general, the eigenfunctions u(x, y, z) are three-dimensional. It is possible to calculate
three-dimensional eigenfunctions but it is very computationally expensive. If the base
flow is planar (i.e. invariant in the y direction) or axisymmetric (i.e. invariant in the
θ direction) then another Fourier decomposition can be performed in, respectively, the
cross-stream direction , exp(ikyy), or the azimuthal direction, exp(imθ). This reduces the
three-dimensional eigenvalue problem to a set of two-dimensional eigenvalue problems for
ũ(x, z).

It is possible to calculate two-dimensional eigenfunctions but it is still computationally
expensive and, until recently, was impractical. If the base flow is planar or axisymmetric
and also invariant in the streamwise (x) direction then a further Fourier decomposition can
be performed in the x-direction, exp(ikx). This reduces the two-dimensional eigenvalue
problem to a set of one-dimensional eigenvalue problems for û(z). These can be calculated
very quickly numerically and, for some flows, can even be calculated analytically.

Of course, most real flows are not invariant in the streamwise direction because of the ac-
tion of viscous forces. A more rigorous analysis, therefore, needs to consider the stream-
wise dependence of perturbations as the product of a function that varies on a fast stream-
wise lengthscale and another function that varies on a slow streamwise lengthscale. This is
the WKBJ approximation. This approximation is justifiable as long as the base flow varies
on a much longer lengthscale than the wavelength of the perturbations. Using an axisym-
metric base flow as an example, we take the axial and azimuthal velocity profiles at each
streamwise location and stretch them to infinity in the streamwise direction. (We have to
set the radial velocity to zero in order to satisfy continuity.) Then we examine each slice
separately. Reviews by [Huerre & Monkewitz (1990)] and [Huerre & Monkewitz (2000)]
and the paper by [Monkewitz, Huerre & Chomaz (1993)] describe this process formally
and in great detail. It is analogous to the two-timing approach to nonlinear problems that
evolve on two different timescales [Strogatz (2001)].

This reduction of a three-dimensional problem to a set of one-dimensional problems is the
basis for the local stability analysis of open shear flows. Local stability analysis is very
quick and sometimes remarkably accurate. These days, it is best used in conjunction with
global stability analysis because it provides useful information about the base flow that
cannot be obtained from a global analysis alone.

1.3 LINEARIZATION AND FOURIER DECOMPOSITION

The N–S equation and incompressibility condition are:

∂U
∂t

+ U · ∇U = −∇P +
1

Re
∇2U, (1.1)

∇ · U = 0. (1.2)
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The base flow is assumed to be a steady solution to (1.1) – i.e. it satisfies (1.1) when the
time derivative term is zero. The velocity and pressure are expressed as a sum of the base
flow components and the infinitesimal perturbation components, such that U = Ū+ εu and
P = P̄ + εp, where ε is small. These are substituted into (1.1) and then the steady solution
corresponding to the base flow is subtracted. The linearized Navier–Stokes equation is then
given by the highest order terms, which are all first order in ε:

∂u
∂t

+ u · ∇Ū + Ū · ∇u = −∇p+
1

Re
∇2u, (1.3)

∇ · u = 0. (1.4)

Terms in higher orders of epsilon (in this case they are all in ε2) are neglected. This is a set
of four partial differential equations (PDEs) in four unknown functions, (u, v, w, p), each
defined in three spatial dimensions, x, y, z, and one time dimension, t.

Now we perform the Fourier decompositions in x, y, and t by substituting u(x, y, z, t) =
û(z) exp{i(kx + kyy − ωt)} and p(x, y, z, t) = p̂(z) exp{i(kx + kyy − ωt)}. This re-
duces the four PDEs for four functions in four dimensions to four Ordinary Differential
Equations (ODEs) for four unknown functions (û, v̂, ŵ, p̂), in one dimension, z. These
governing equations, together with boundary conditions for the unknown functions, com-
prise a one-dimensional eigenvalue problem. In other words, for specified values of k and
ky , the governing equations and boundary conditions can only be satisfied for certain val-
ues of ω.

The governing equations can be solved simultaneously. (This is often the best way be-
cause it uses only first derivatives in the base flow velocity profile and is therefore less
susceptible to errors.) Alternatively, the four unknown functions can be reduced to one
unknown function, and the four equations reduced to one equation through substitution;
[Drazin & Reid (1981)] §25. A convenient trick in two spatial dimensions (i.e. with ky =

0) is to eliminate p̂ by substitution and then to solve for the streamfunction ψ = ψ̂(z)eikx

instead: û = ∂ψ̂/∂z, ŵ = −ikψ̂. This leads to the Orr-Sommerfeld (O–S) equation:

1

ikRe

(
d2

dz2
− k2

)2

ψ̂ =
(
U − ω

k

)( d2

dz2
− k2

)
ψ̂ − d2U

dz2
ψ̃. (1.5)

It is easy to check that this equation is of the Sturm–Liouville type and therefore admits
solutions only for certain eigenvalue pairs of (ω, k).

The analysis in two spatial dimensions is particularly common because we know from
Squire’s theorem that, for a planar flow in one direction, the two-dimensional eigenmodes
are always more unstable than their three-dimensional counterparts; [Drazin & Reid (1981)]
§25. In other words, the most unstable eigenmodes always have ky = 0. Unfortunately,
this convenient trick masks the fact that three-dimensional perturbations tend to give rise
to the maximum transient growth, even though they do not have the maximum long term
(i.e. eigenvalue) growth.

The governing equations and boundary conditions, whether as four separate equations or
one single equation, are usually solved numerically with shooting methods or spectral
methods. Shooting methods are easier to understand but spectral methods are easier to
implement. Nick Trefethen’s book Spectral Methods in Matlab is an excellent tutorial,
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Figure 1.1. Waves often travel in packets and have a well-defined envelope. The phase velocity is
the velocity at which the wave crests travel. The group velocity is the velocity at which the envelope
travels.

with accompanying Matlab scripts, and contains a Chebyshev method that solves the O–S
equation.

Spectral methods express the governing equations and boundary conditions as a general-
ized matrix eigenvalue problem of the form

A(k)ψ = ωB(k)ψ. (1.6)

For each k, the permitted values of ω are found by solving this matrix eigenvalue problem.
For some base flows, it is possible to derive an analytical relationship for ω(k). Whether
expressed as a generalized matrix eigenvalue problem or as an analytical expression, the
relationship between permitted values of ω and k is called the dispersion relation, for
reasons explained in the next section.

1.4 PHASE VELOCITY AND GROUP VELOCITY

The Fourier variables k and ω have important physical relevance. The perturbations can
be written as u(x, z, t) = û(z)eikrxe−kixe−iωrteωit. By considering how each of the four
exponential terms behaves as x and t increase, it is easy to see that the perturbations are
wave-like and that kr is 2π/λ, where λ is the streamwise wavelength, ki is the decay rate
in space of the envelope of the waves, ωr is the angular frequency of the waves, and ωi is
the growth rate in time of the envelope of the waves.

The perturbations can also be written as u(x, z, t) = û(z) exp{ik(x−ct)}, where c ≡ ω/k.
For a given k, the value of u is therefore constant along a particular ray with (x − ct) =
constant. In other words, c is the velocity of the wave crests, which is known as the phase
velocity. If (and only if) ω is directly proportional to k, then every wavenumber has the
same phase velocity and the medium is known as a non-dispersive medium.

In general, the perturbation consists of a superposition of many waves, which interfere
with each other constructively and destructively. The patterns of constructive and destruc-
tive interference usually cause the perturbation to have an identifiable envelope, as shown
in figure 1.1.. If the wavecrests of all wavenumbers move at the same phase velocity, then
this interference pattern, and therefore this envelope, also move at the phase velocity and
they do not change shape over time. If, however, the wavecrests of different wavenumbers
move at different phase velocities, then this interference pattern changes shape over time
and the envelope moves at a different velocity to the wave crests. The velocity of the en-
velope is known as the group velocity and it is equal to dω/dk. In this case, the medium is
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Figure 1.2. The base flows in this tutorial are all planar jets and wakes with top hat velocity profiles.
These flows have analytical dispersion relations, which can be calculated without spectral or shooting
methods.

known as a dispersive medium.

Perhaps surprisingly, the group velocity has more physical relevance than the phase veloc-
ity. This is because it is the velocity at which energy and information travel. For example,
light travels at 3 × 108 ms−1 in a vacuum. A vacuum is a non-dispersive medium, so
the phase velocity equals the group velocity. Condensed matter is a dispersive medium,
however, so outside a vacuum the phase velocity of light does not equal the group veloc-
ity. In fact, the phase velocity of light outside a vacuum is greater than 3 × 108 ms−1 (!),
but fortunately the group velocity, which is the speed at which information travels, is less
than 3 × 108 ms−1. The distinction between phase and group velocity is one of the most
important concepts in local stability analysis and we will return to it repeatedly.

1.5 THE DISPERSION RELATIONS FOR SIMPLE FLOWS

Most analyses of local stability are performed by solving the O–S equation numerically
using spectral methods in one dimension. Before such methods were available, disper-
sion relations for a few simple flows were derived analytically. These dispersion rela-
tions are used in this chapter because their qualitative behaviour is much the same as
that of the O–S equation, but they are easier to derive, understand, manipulate, and anal-
yse. They have come from [Rayleigh (1896)] §§365 – 369, [Drazin & Reid (1981)] §§4–5,
[Yu & Monkewitz (1990)] and [Juniper (2007)] They are expressed in dimensionless form
in the format preferred by [Huerre & Monkewitz (2000)]: as a function that equals zero:
D ≡ f(ω, k) = 0. It is easiest to explain the flow with the most features first and then
simplify it by removing the features one by one.

The flow with the most features is shown in figure 1.2.. It is a planar flow consisting of
a central flow with density ρ1, velocity U1 and width 2h1, surrounded by two flows with
density ρ2, velocity U2 and width h2. The velocities and densities are uniform except at the
shear layers between the fluids, where they jump discontinuously across an interface that
has surface tension σ. We will consider only varicose perturbations, in which the shear
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layers move in opposite directions, and sinuous perturbations, in which the shear layers
move in the same direction. Any perturbation can be expressed as a linear combination of
a varicose and sinuous perturbation. The dimensionless parameters are

• the shear ratio Λ ≡ (U1 − U2)/(U1 + U2) ;

• the density ratio S ≡ ρ1/ρ2;

• the confinement ratio h2/h1;

• the surface tension Σ ≡ 4σ/(h1ρ2(U1 + U2)2).

Various symmetries in the model become more apparent if a slightly different set of ref-
erence scales and dimensionless parameters are used [Rees & Juniper (2009)], but the dis-
persion relations become less easy to read.

The dispersion relations are

• varicose perturbations of a confined planar jet/wake

D ≡ S(1 + Λ− ω/k)2 coth(ξ) + (1− Λ− ω/k)2 coth(ξh)− ξΣ = 0 (1.7)

• sinuous perturbations of a confined planar jet/wake

D ≡ S(1 + Λ− ω/k)2 tanh(ξ) + (1− Λ− ω/k)2 coth(ξh)− ξΣ = 0 (1.8)

• varicose perturbations of an unconfined planar jet/wake

D ≡ S(1 + Λ− ω/k)2 coth(ξ) + (1− Λ− ω/k)2 − ξΣ = 0 (1.9)

• sinuous perturbations of an unconfined planar jet/wake

D ≡ S(1 + Λ− ω/k)2 tanh(ξ) + (1− Λ− ω/k)2 − ξΣ = 0 (1.10)

• perturbations of an unconfined single shear layer

D ≡ S(1 + Λ− ω/k)2 + (1− Λ− ω/k)2 − ξ = 0 (1.11)

(Σ = 1 for an unconfined single shear layer because the surface tension defines the
reference lengthscale h1)

The variable ξ is required in order to keep branch points off the kr axis, as described in
[Healey (2006)] and [Juniper (2007)]. It is given by ξ ≡ +(k2 + k2y)1/2 as ky → 0. Here,
however, we shall examine only k ≥ 0 and therefore ξ can be replaced by k.

Surface tension is required in order to prevent ω from becoming infinite as k becomes in-
finite. Surface tension has a strong effect on absolute instability, however, as described in
[Rees & Juniper (2009)]. An alternative strategy is to introduce a finite shear layer thick-
ness. This prevents ω from becoming infinite and has only a mild effect on long wavelength
instabilities. Analytical dispersion relations exist for the analogous flows [Juniper (2007)].
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1.6 CODING THE DISPERSION RELATIONS

It is quite easy (but rather tedious) to use the quadratic formula to derive c ≡ ω/k as an ana-
lytic function of k. It is quicker to use Matlab functions. The function fun eval c single.m
evaluates the two values of c for a given value of k. It uses the quadratic formula and then
uses a stencil to change Matlab’s default ordering of c1 and c2. (The stencil does not
become important until we consider the spatio-temporal analysis in section 1.11.)

The function has been constructed so that entire arrays of c1 and c2 can be calculated
simultaneously. This requires operators such as (.*) to be used instead of (*). The param-
eters Λ and S are held in a Matlab structure as param.L and param.S. This notation
makes it easy for a single script to call a variety of functions.

1. Write Matlab functions to calculate ω/k for the remaining dispersion relations.
Name them

• fun eval c unconf jetwake sin.m

• fun eval c unconf jetwake var.m

• fun eval c conf jetwake sin.m

• fun eval c conf jetwake var.m

2. Try calling these functions with the generic functions fun eval c.m and fun eval w.m
in order to become familiar with the program structure.

3. With the exception of the single shear layer, iterative procedures are required in
order to find k as a function of ω. These involve setting the function D to zero by
changing k at given ω. Write Matlab functions to calculate D for each dispersion
relation, given ω and k. Name them

• fun eval D single.m

• fun eval D unconf jetwake sin.m

• fun eval D unconf jetwake var.m

• fun eval D conf jetwake sin.m

• fun eval D conf jetwake var.m

4. Try calling these functions with the generic function fun eval D.m.

5. Write a script that calculates ω using the first set of functions and then checks that
this (ω, k) pair satisfies D = 0 by calling the second set of functions.

These functions will be the building blocks for rest of this tutorial.

1.7 TEMPORAL STABILITY ANALYSIS

In a temporal stability analysis, we constrain k to be a real number. Physically, this means
that we consider only waves that do not grow or decay in the streamwise direction. We
then ask whether such waves grow or decay in time. An example is shown in figure 1.3.
(left) for a single shear layer with Λ = 0.9 and S = 1.
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Figure 1.3. Left: the real and imaginary components of ω(k) calculated with a temporal stability
analysis, in which k is constrained to be real. Right: the imaginary components of ω(k) for the five
dispersion relations.

1. Write a script called script temporal 001.m to generate figure 1.3. (left).

2. There are two regimes, either side of k = 1.6. How do the waves behave in these
two regimes?

3. Vary Λ and S to see how this model behaves.

4. Write a script called script temporal 002.m to perform the temporal analysis
on all the dispersion relations and to plot their growth rates as a function of positive
k on the same plot, as shown in figure 1.3.(right).

5. What do you observe? In particular, how does confinement affect the temporal sta-
bility of the flows?

1.8 GROUP VELOCITY

The phase velocity c ≡ ω/k is the velocity of wavecrests. The group velocity cg ≡ dω/dk
is the velocity of wavepackets. In a dispersive medium, c 6= cg .

1. Write a function called fun eval dwdk.m to evaluate the group velocity as a func-
tion of k. A first order finite difference method will be good enough.

2. Write a script called script groupvel 001.m to compare the phase and group
velocities as shown in figure 1.4..

3. Investigate the different dispersion relations at different parameter values. What do
you observe? Look particularly at unconfined low density jets (Λ ∼ 1, S � 1) at
small values of Σ.

1.9 SPATIAL STABILITY ANALYSIS

In a spatial stability analysis, we constrain ω to be a real number. Physically, this means
that we force sinusoidally at a particular point in space and see whether the resulting pertur-
bations grow (negative ki) or decay (positive ki) in space. This is known as the signalling



SPATIAL STABILITY ANALYSIS 9

0 1 2 3 4

wavenumber, k

-4

-2

0

2

4
Im

a
g
(c

g
)

Phase and group velocities , Λ = 0.9, S = 1

c1
c2
cg1
cg2

0 1 2 3 4

wavenumber, k

-4

-2

0

2

4

R
ea
l(
c g
)

c1
c2
cg1
cg2

Figure 1.4. The phase velocity (solid lines) and group velocity (dashed lines) as a function of
wavenumber, k , for a single shear layer with surface tension. This is a dispersive medium, which
means that waves at different wavenumbers travel at different speeds and that the group velocity does
not, in general, equal the phase velocity.

0 0.5 1

-1

-0.8

-0.6

-0.4

-0.2

0

Im
a
g
(k
)

Spatial; Λ = 0.9, S = 1

0 0.5 1

angular frequency, ω

0

0.2

0.4

0.6

0.8

1

R
ea
l(
k
)

0 0.5 1

−0.1

−0.05

0

0.05

Spatial ; Λ = 0 .5, S = 1

Im
a
g
(k

)

 

 

Exact

Gaster

0 0.5 1
0

0.2

0.4

0.6

0.8

1

angular f requency, ω

R
e
a
l(

k
)

 

 

Exact

Gaster

Figure 1.5. The real and imaginary components of k , calculated with a spatial stability analysis,
in which ω is constrained to be real. Left: the exact spatial analysis, performed via iteration from a
guessed value of k. Right: the approximate spatial analysis from Gaster’s transformation compared
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problem.

Algorithm fun eval k.m uses an iterative technique to find k, given ω and an ini-
tial guess for k. It uses Matlab’s function fsolve.m, which tries to set the output, D,
of fun eval D loc to zero by varying its argument k. This is where the functions
fun eval D *.m become useful.

1. Write a script called script spatial 001.m to perform a spatial stability anal-
ysis on a single shear layer with Λ = 0.5 and S = 1, as shown in figure 1.5..

2. What has happened at small ω in this figure?

3. What is the most amplified frequency?

4. What happens to the most amplified frequency as Λ increases?

Spatial stability analyses are more difficult to perform than temporal stability analyses
and, as we shall see later, have no physical relevance when the flow is absolutely unstable
because the transient behaviour overwhelms the signal if the wave with zero group velocity
has positive growth rate.

1.10 GASTER’S TRANSFORMATION (1962)

In his 1962 JFM paper [Gaster (1962)], Mike Gaster worked out the relationship between
temporal stability and spatial stability (Journal of Fluid Mechanics Vol 14 pp 222–224).
The angular frequency and wavenumber pairs from the temporal analysis are labelled ω(T)
and k(T) respectively. The angular frequency and wavenumber pairs from the spatial anal-
ysis are labelled ω(S) and k(S) respectively. He finds that these are approximately related
by:

kr(S) ≈ kr(T), (1.12)
ωr(S) ≈ ωr(T), (1.13)
ωi(T)

ki(S)
≈ −∂ωr

∂kr
. (1.14)

The final term in (1.14) can be written −Re(dω/dk) and is simply the real component of
the group velocity.

1. Write a script called script spatial 002.m to compare ki(ωr) calculated with
script spatial 002.m with that calculated from Gaster’s transformation, as
shown in figure 1.5. (right). (You can use Gaster’s transformation to improve the
initial guess of k for the spatial analysis.)

2. Vary S and Λ to discover when Gaster’s transformation works well and when it
works badly.

Gaster’s transformation begs the question of what happens when the real part of the group
velocity is zero. Is the spatial growth rate infinite? Rather than ponder this conundrum now,
it is better to progress to a spatio-temporal stability analysis, which will make everything
clear.
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Λ = 0.9 , S = 1. This is a spatio-temporal stability analysis in which both ω and k are complex. The
points with dω/dk = 0 can be identified by eye (there is one in each frame). The thick black line is
ωi = 0.

1.11 SPATIO-TEMPORAL STABILITY ANALYSIS

In a spatio-temporal analysis, k and ω are both allowed to be complex numbers. Physically,
this means that we consider waves that grow or decay in the streamwise direction and that
grow or decay in time. A useful way to picture this is to imagine exciting every wave
simultaneously with an impulse at (x, t) = (0, 0) and then observing the evolution of the
resulting wavepacket. This is known as an impulse response or, equivalently, the Green’s
function. (For the purists: we assume for now that the fluid is incompressible and therefore
that all information about the boundary conditions is conveyed instantly to the point of
impulse.) The response to any type of forcing can be found from this by convoluting the
impulse response with the forcing signal, but we will stick with the impulse response itself
because it tells us all that we need to know.

Only some waves are permitted (these are the ones that satisfy the dispersion relation).
They propagate away from the point of impulse at different velocities, given by their group
velocity dω/dk, and grow or decay at different rates, given by their growth rate, ωi.

If every wave decays in time then the flow is stable. If some waves grow in time then the
flow is unstable and a further distinction is necessary. After a long time, the only wave to
remain at the point of impulse is the wave that has zero group velocity. If this wave decays
in time, then the impulse response decays to zero at the point of impulse and the flow is
called convectively unstable. If the wave grows in time, then the impulse response grows
to infinity at the point of impulse and the flow is called absolutely unstable.

In the next section, we will examine this in more detail. For now, however, we will find the
wave with zero group velocity by plotting contours of ω in the complex k-plane.

1. For the single shear layer, write a script called script spatemp 001.m to cal-
culate ω1 and ω2 on a grid of complex k with kr ∈ [0, 2] and ki ∈ [−1, 1]. Plot
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contours of ωi and ωr on the same plot, as in figure 1.6.. (The stencil becomes
useful here.) Plot the contour ωi = 0 with double thickness.

2. What do you notice about the relationship between the contours of ωi and the con-
tours of ωr?

3. Identify by eye the position where the group velocity is zero. Does it have positive
or negative growth rate?

4. Write a function called fun eval dwdk0.m that uses fsolve to converge to this
point, given an initial guess, and then displays (ω, k) at this point.

5. Write a script called script click.m that asks the user to click near a point
where dω/dk = 0, then converges accurately to that point, then determines whether
the flow is absolutely or convectively unstable.

The contours of ωi and ωr are always at right angles to each other. Furthermore, the two
components of curvature on the surface ωi(k) always have opposite sign. This means that
points where dω/dk = 0 are saddle points of ω(k). In the long time limit, the impulse
response at the point of impulse is dominated by the behaviour of these saddle points. At a
saddle point, the values of ω and k are called the absolute frequency and wavenumber and
are given the symbols ω0 and k0.

1. Compare figure 1.3. with figure 1.6. to check that the temporal analysis corresponds
to a slice through ω(k) along the kr axis.

2. What does the spatial analysis correspond to in figure 1.6.?

3. Explain why a spatial analysis does not work for absolutely unstable flows.

1.11.1 The Briggs-Bers criterion

The aim of this section is to present a more rigorous calculation of the impulse response
and to show that some saddle points do not contribute to it. The concepts may be difficult
to grasp in a short time, but the main point is summarized at the end.

We want to evaluate

u(x, t) =

∫ ∞
−∞

∫ ∞
−∞

û(k, ω)ei(kx−ωt) dω dk. (1.15)

To evaluate the response at the point of impulse, see [Huerre & Monkewitz (1990)], par-
ticularly equation (9), and [Huerre & Monkewitz (2000)], which gives more steps in the
calculation. To evaluate the response at every point in space, see [Healey (2006)], particu-
larly figure 11, and [Juniper (2007)], one result from which is shown in figure 1.7..

Figure 1.7. shows contours of the growth rate as a function of group velocity, (x/t, z/t),
for all the permitted waves in the impulse response. (It is for varicose perturbations of an
unconfined low density jet with Λ = 1/1.1 and S = 0.1.) The impulse response propa-
gates and grows at the point of impulse, (x/t, z/t) = 0, so this flow is absolutely unstable.
It grows fastest, however, in the downstream direction, x/t > 0. The maximum growth
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Figure 1.7. This is the impulse response for varicose perturbations of an unconfined low density
jet with Λ = 1/1.1 , S = 0.1 , and finite thickness shear layers. The impulse is at (x, z) = (0, 0) and
the resultant waves disperse at their individual group velocities in the x and z directions. The chart
plots the growth rate, ωi , of the wave that dominates along each ray (x/t, y/t) , i.e. the wave that has
group velocity (x/t, y/t). We see that most of the wavepacket propagates and grows downstream (to
the right) but that some propagates and grows upstream (to the left). The growth rate at the point of
impulse (x/t, y/t) = (0, 0) is positive, which means that this is an absolutely unstable flow.

rate of the impulse response (8.5) is given by the growth rate of the temporal stability anal-
ysis because, at this point in the impulse response, ki = 0.

The integral (1.15) can be evaluated by integrating either over ω and then k, or over k and
then ω. For these dispersion relations, it easiest to integrate over ω first because, for each
k, there are only two permitted values of ω. The integral becomes

u(x, t) =

∫ ∞
−∞

û(k, ω)ei(kx−ω1(k)t) dk +

∫ ∞
−∞

û(k, ω)ei(kx−ω2(k)t) dk. (1.16)

Initially, the integration path lies on the real k-axis but it can be shifted into the complex
k-plane without changing the integral, as long as it is not shifted through branch points or
poles (i.e. points where ω = ±∞). The integral is easiest to evaluate if the integration path
is shifted onto lines of constant ωr because then the phase of exp{i(kx − ωt)} remains
constant and the integrand does not oscillate as k changes. (Remember that x = 0 because
we are looking at the point of impulse, so the only term that can oscillate as k varies is
exp(iωr(k)t).)

In order to pass from k = −∞ to k = +∞, the integration path must cross some (but not
all) of the saddle points in the k-plane and, for each of these saddle points, there is only one
possible value of ωr. This means that the integration path must cross these saddle points
at this value of ωr and then change to another value of ωr at points where ωi is strongly
negative, so that the oscillating contribution to the integral there is negligible.

This is best explained by showing an example. Figure 1.8. shows contours of ωi(k) for
varicose perturbations of a confined jet flow with Λ = 1, S = 1, h = 1.3, Σ = 1. The
integration path needs to pass over two saddle points, s1 and s3, in order to pass from
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Figure 1.8. Contours of ωi(k) for varicose perturbations of a confined jet flow with surface tension,
showing the integration path from k = −∞ to k = +∞. The integration path passes over saddle
points s1 and s3 , which means that they contribute to the integral. It does not pass over saddle points
s2a or s2b , however, which means that they do not contribute to the integral. This is another way
to visualize the Briggs-Bers criterion, which states that a saddle point is only valid if it is pinched
between a k+ and a k− hill.
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Figure 1.9. Contours of ωi(k) for the same flow as figure 1.8. as the surface tension is reduced.
This reduction in Σ causes the s1 saddle to move to lower ωi and therefore causes the integration path
to pass over the s2a saddle point. When the surface tension tends to zero (not shown here) all the s2
saddle points move onto the integration path.

k = 0 to k = ∞, but it misses out saddles s2a and s2b. As the surface tension reduces,
which is shown in figure 1.9., saddle s2a comes onto the integration contour. As it reduces
further, s2b etc. come onto the contour too.

In the long time limit, the dominant contribution to the integral comes from the point on
the integration path with highest ωi, which is always a saddle point. In fact, we already
knew that the dominant contribution comes from a saddle point because these are the only
points with zero group velocity. But now we know that only some saddle points contribute.
You will notice that, if you head directly up the hills (i.e. on lines of constant ωr) on either
side of the valid saddle points, one hill goes into the top half k-plane and the other hill goes
into the bottom half k-plane. This is the Briggs-Bers criterion. It is another way of stating
that the saddle point must lie on the integration path.

1. Write a script called script spatemp 002.m to plot ω1(k) for varicose pertur-
bations of a confined jet/wake flow with Λ = 1, S = 1, h = 1.3, Σ = 1. Compare it
with figure 1.9..
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Figure 1.10. Schlieren images of Helium jets (taken by Larry K. B. Li). These show the strong
beating that is characteristic of a globally unstable flow. The image on the right also shows side jets,
which are a secondary effect of this instability.

2. Investigate how the dominant saddle points change as S decreases, Σ decreases, and
h increases. Look particularly at the s2a saddle.

3. Write a script called script spatemp 003.m to repeat this for varicose pertur-
bations of an unconfined jet/wake flow with Λ = 1, S = 1, Σ = 0. This corresponds
to an unconfined jet. Find the s2a saddle point exactly with script click.m

The main point of this section is that only some saddle points contribute to the impulse
response and that, in the case of a low density jet with vanishing surface tension, the s2a
saddle is one of these.

1.12 LOW DENSITY JETS

Low density round jets are globally unstable because of a sufficiently large region of ab-
solute instability at their base. Two examples are shown in figure 1.10.. Although these
jets are round, the dispersion relation fun eval * uncon jetwake var.m can model
them reasonably accurately. In these exercises, we will map the absolutely unstable region
of a low density jet in (Λ, S)-space.

1. Write a function called fun eval w0i, which takes in a value of Λ and returns
the growth rate, ω0i, of the saddle point. The input arguments will have to be
(param,k init,L,tol), where param contains all the parameters except L,
k init is an initial guess for the wavenumber of the saddle point, and tol is the
tolerance required for fun eval dwdk0.m.

2. Embed fun eval w0i within another function called fun eval L, which uses
fsolve to reduce ω0i to zero by changing L.
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Horizontal hatching: absolute instability of the sinuous mode; vertical 
hatching: absolute instability of the varicose mode. 

Second, we conclude that in the wake it is always the 
sinuous or von Karman mode that first becomes absolutely 
unstable, while in the jet it is the varicose mode which corre-
sponds precisely to the experimentally observed symmetry 
of self-excited oscillations in both cases. 

Third, heating, or rather lowering of the density, is seen 
to have opposite effects on the wake and the jet. In the wake 
absolute instability is suppressed by low density, while in the 
jet it is enhanced. This again correlates with the experimen-
tal observations that von Karman vortex shedding is sup-
pressed by heating of the wake, \7-21 while heating of jets 
leads to self-excited oscillations in the axisymmetric case7- 9 

as well as in the two-dimensional situation (paper in prep-
aration by the present authors). 

IV. RESULTS OF THE INVISCID JET 
Based on the results of Sec. III for jets, attention is fo-

cused on the behavior of the varicose mode under heating. 
Furthermore, we restrict ourselves to inviscid jets exhaust-
ing into an ambient gas at rest, i.e., to R = 00 and A = + 1. 
For this case, the absolute growth rate m? is shown on Fig. 
3 (a) for different density ratios S = P Jp 00 as a function of 
the inverse profile parameter N- 1 • The corresponding abso-
lute frequencies and wave numbers k 0 are shown on Fig. 
3 (b). While all profiles in the homogeneous jet are seen to be 
convectively unstable, lowering of the jet density leads to 
absolute instability of the profiles with relatively large N, 
which are typically found in the potential core region of the 
jet. The very first profile to become absolutely unstable at the 
transition value SA = 0.95 has an N = 5, corresponding to 
(0) =0.3. For S < 0.95, m? becomes positive for more and 
more profiles in the potential core region. The associated 
frequencies are of the order of 1.5, i.e., close to the fre-
quency associated with the jet column mode (note that for 
A = 1 the usual Strouhal number is 

For comparison, the much lower absolute growth rate 
of the sinuous mode (S = 1 only) is also included on Fig. 
3(a). Finally, the choice of infinite Reynolds number isjusti-
fied by a computation at R = 103, a value lower than in most 
laboratory experiments, which yields only a 3% drop of the 
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FIG. 3. (a) Absolute growth rate and (b) frequency with corre-
sponding wave number kO in the inviscid, variable density jet (A = + 1) 
versus the profile shape parameter N. Varicose mode with S = 1 (-), 
S= 0.95 (-- -),S= 0.85 (-'-'-), S= 0.7 (-"-); sinuousmodewithS= 1 
("'). 

transition density ratio from SA (R = 00 ) = 0.95 to 
SA (R = 103 ) = 0.92. 

V. RESULTS FOR THE VISCOUS WAKE 
Based on the results of Sec. III, as well as those of Refs. 

14 and 15, we restrict our attention in the wake to the sin-
uous or von Karman mode. Analogous to Ref. 15, the 
boundary between convective and absolute instability in the 
S-N- 1 plane has been computed for several Reynolds 
numbers of interest. The results for A = - 1 (zero center-
line velocity) and A = - 1.25 (backftow of O.llil 00 on the 
centerline) are shown on Figs. 4(a) and 4(b), respectively. 
To attempt a clarification of the mechanism-inertial or vis-
cous-which leads to the suppression of absolute instability 
in heated wakes, computations have been performed for 
both constant viscosityjl = 1 (i.e.,jl*=:jl'!,) andjl =jl(n. 

The first observation is that, in order to eliminate abso-
lute instability for all N, i.e., all profile shapes, a considerably 
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Figure 1.11. Absolute / Convective transition lines for unconfined planar jets and wakes as a function
of velocity ratio Λ and density ratio S. Left: created with script SL var 001.m (currently
incomplete). Right: from [Yu & Monkewitz (1990)].
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Figure 1.12. The absolute growth rate ω0i as a function of the long streamwise distance, X . Left:
as calculated from the saddle points of the base flow. Right: after interpolation with a second order
polynomial and analytical continuation into the complex X-plane.

3. Write a script called script SL var, which varies S between 0.1 and 1 and plots
the values of Λ for which ω0i = 0, as in figure 1.11. (left).

4. Write a script called script SL var 002, which finds the absolutely unstable
regions for unconfined jets and wakes within the range S ∈ [0.1, 10] and Λ ∈ [−2, 2].
Compare your results with those from [Yu & Monkewitz (1990)], which are shown
in figure 1.11. (right).

1.12.1 Calculating the linear global mode frequency

For flows that evolve slowly in the streamwise direction it is possible to combine the
slices in order to work out the global mode growth rate. The details are explained in
[Huerre & Monkewitz (1990)] and in more detail in [Monkewitz, Huerre & Chomaz (1993)].
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The first stage of this analysis is to calculate the absolute frequency ω0 as a function of the
downstream distance, X . (This is a function of the long lengthscale, X , rather than the
short lengthscale, x). To do this, we assume that ω0(X) can be continued analytically into
the complex X-plane. If ω0(X) varies slowly in the X-direction and if ω0i(X) reaches
a maximum within the domain being considered then ω0(X) will have a saddle point at
some complex value of X close to the Xr axis. The value of ω0 at this saddle point gives
the frequency and growth rate of the linear global mode, ωg .

It is not possible to continue ω0(X) itself into the complex X-plane because we only have
information on the Xr axis. Instead, we interpolate a polynomial through ω0(X) and then
continue this polynomial into the complex X-plane. Then we look for saddle points of this
polynomial.

1. Write a script called script w0X 001.m which calculates ω0(X) and k0(X) for
varicose perturbations of a uniform density jet in which Λ = 1.2 − 0.2X2 and
X ∈ [−1, 1], as in figure 1.12. (left). (This is a crude model of the flow around a
Rankine body.) Save param, L, X, w0, and k0 to file script w0X 001.mat

2. Write a script called script w0X 002.mat which uses polyfit to fit a second
order polynomial through ω0(X) and plots contours of ω0i and ω0r in the complex
X-plane for Xr ∈ [−1, 1] and Xi ∈ [−1, 1], as in figure 1.12. (right) Find the posi-
tion of the saddle point, (ωg, Xg). Save wg, and Xg to file script w0X 002.mat.

3. Try out different models for Λ(X) (e.g. Λ = 1.3− 0.1 ∗X + 0.1X3 − 0.3X4).

1.13 CALCULATING THE LINEAR GLOBAL MODE SHAPE

In order to calculate the linear global mode shape, the response of the whole flow must be
calculated at the frequency and growth rate of the linear global mode, ωg . Each slice is
forced at ωg and its streamwise wavenumber and growth rate, k, are calculated. For each
ωg there are usually an infinite number of values of k. We need to choose the two that
pass closest to the saddle point of ω0(k) at the X-position of the saddle point ω0(X). The
downstream-travelling wave is labelled k+ and the upstream-travelling wave is labelled
k−.

The corresponding global mode shape is calculated by integrating

u(x, z, t) ∼ A0(X)û±(z;X) exp

(
i
ε

∫ X

0

k±(X ′;ω) dX ′ − ωgt

)
, (1.17)

where, at the X-position of each slice, k+ is the local wavenumber downstream of Xs, k−

is the local wavenumber upstream of Xs, and û±(z;X) is the corresponding eigenfunc-
tion. The slowly-varying amplitude, A0(X), is usually assumed to be uniform because the
influence of this assumption is much smaller than the influence of the inaccuracies in k±.

Unfortunately, the dispersion relations studied here correspond to cases that are never sta-
ble. (They are either convectively unstable or absolutely unstable). This means that the
global mode grows without limit in the x-direction, which is not physical. This means
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Figure 1.13. The base flow (a), local stability properties (b–d) and global modes (e–f) of a confined
planar wake with h = 1 , Λ−1 = −1.2 , Re = 400 and free slip boundaries; (a) streamlines;
(b) absolute growth rate, ω0i; (c) spatial growthrates, k+

i (+) and k−
i (◦), calculated with the local

analysis, compared with ki (–) extracted from the global analysis (the latter is noisy at the upstream
end because the amplitude is small); (d) as for (c) but for the real spatial wavenumbers, k±

r ; (e) v̂(x, z)
of the first eigenmode calculated with the global analysis; (f) v̂(x, z) of the first eigenmode calculated
with the local analysis. From [Juniper, Tammisola & Lundell (2011)].

that we have come as far as we can with these simple models. Nevertheless, if you want
to continue the analysis with different dispersion relations, the following exercises explain
how to calculate the x-dependence of the global mode by integrating (1.17).

1. Starting from the slice at the axial location of the saddle point ω0(X), write a script
called script kX 001.m that finds two different values of k(ωg) on either side of
the saddle point at k0. Save kp and km to file script kX 001.mat.

2. Starting from the values of k+ and k− at this slice, write a script called script kX 002.m
that iterates through all the slices to find k+(X) and k−(X). Save X, ind, kpX and
kmX to file script kX 001.mat.

3. Write a script called script uX 001.m that integrates (1.17) to find the x-dependence
of the global mode.

Figure 1.13. shows a comparison between a global mode calculated with a 2D global analy-
sis, frame (f), with that from a local analysis, frame (g), taken from [Juniper, Tammisola & Lundell (2011)].
These are for a viscous wake flow, which becomes stable at x ≈ 30. The two global modes
are remarkably similar. The main difference arises from the fact that the local analysis
slightly over-predicts the growth rate of the linear global mode. If this is corrected, the two
mode shapes are nearly identical.

Local stability analysis is only strictly valid when the flow is parallel or weakly non-
parallel. Nevertheless, it can be a useful diagnostic tool for strongly non-parallel flows.
In figure 1.14., for example, we see that the vortex breakdown bubble has two regions of
absolute instability: one in the bubble itself and one in the wake behind it. Both of these
regions can support a global mode. Indeed, this flow seems to behave as if it is being forced
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predicts a global frequency of ωg = 1.0931 + 0.0796i. Both growth rates are larger than that found from the
global analysis, which is a general feature of local analyses in wake flows [4]. By comparing the estimated global
growth rates and wavemaker positions with those from the global analysis, we infer that the global mode is
caused by the large region of absolute instability in the wake.

For a given azimuthal wavenumber, m, more eigenmodes become unstable as the swirl increases. Further-
more, eigenmodes at higher m also become unstable as the swirl increases. The local analysis indicates that
there are one or two valid saddle points (i.e. k+/k− pinch points) at each streamwise location. Broadly, these
group into one saddle point that dominates in the bubble and another saddle point that dominates in the wake.
As the swirl increases, the saddle point in the wake becomes more absolutely unstable.

We find that the local analysis is valid only for slowly developing, weakly non-parallel flows. Furthermore,
it cannot conclusively identify the location of the wavemaker region in flows which have more than one region
of absolute instability.

Figure 1: (a) streamlines and azimuthal velocity (colour) of the base flow for Sw = 1.0; (b) local absolute
growth rate ω0,i; (c) real component of the direct global mode for radial velocity; (d) real component of the
adjoint global mode for radial velocity; (e) sensitivity of growth rate; (f) structural sensitivity as defined by [4]
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by two coupled oscillators.

Finally, local stability analyses can also predict the frequency of saturated nonlinear global
modes; [Pier, Huerre & Chomaz].
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