CHAPTER 1

LOCAL LINEAR STABILITY ANALYSIS

1.1 INTRODUCTION

Until the advent of high performance computers, local stability analysis was the standard
approach to flow instability. These days it is still useful although, as computers become
more powerful, it is likely to be used more as a diagnostic tool than as a predictive tool.
Nevertheless, its speed makes it well-suited to problems at high Reynolds numbers and in
complex geometry, for which global stability analysis is very computationally expensive.

This chapter explains the methodology behind local stability analysis and then contains
some worked examples in Matlab. These introduce the concepts of phase and group veloc-
ity, temporal analyses, spatial analyses, Gaster’s transformation, spatio-temporal stability
analyses and how to re-construct a global mode from a local analysis.

1.2 METHODOLOGY

We take a steady flow, known as the base flow, and investigate the behaviour of infinitesi-
mal perturbations to that flow. These perturbations are governed by the linearized Navier—
Stokes equation (LN-S), which is derived in section 1.3. This equation has three dimen-
sions in space and one in time. The time dimension is usually semi-infinite, i.e. it starts at
t = 0 and ‘ends’ at t = oo. This means that a Fourier decomposition is appropriate, i.e. we
consider solutions of the form u(x, y, z) exp(—iwt) and then integrate over all w. For most



values of w, the only permitted solution is u(x, y, z) = 0. For some values of w, however,
the LN-S equation and boundary conditions permit non-zero solutions of u(x, y, z). These
values of w are the eigenvalues of the system and the corresponding fields u(z, y, z) are
their eigenfunctions. Together, they are called the eigenmodes or global modes. Usually
we consider just the eigenmode with the highest growth rate and do not perform the inte-
gration in w.

In general, the eigenfunctions u(z, y, z) are three-dimensional. It is possible to calculate
three-dimensional eigenfunctions but it is very computationally expensive. If the base
flow is planar (i.e. invariant in the y direction) or axisymmetric (i.e. invariant in the
0 direction) then another Fourier decomposition can be performed in, respectively, the
cross-stream direction , exp(ik,y), or the azimuthal direction, exp(im#). This reduces the
three-dimensional eigenvalue problem to a set of two-dimensional eigenvalue problems for
u(z, z).

It is possible to calculate two-dimensional eigenfunctions but it is still computationally
expensive and, until recently, was impractical. If the base flow is planar or axisymmetric
and also invariant in the streamwise (z) direction then a further Fourier decomposition can
be performed in the z-direction, exp(ikz). This reduces the two-dimensional eigenvalue
problem to a set of one-dimensional eigenvalue problems for (z). These can be calculated
very quickly numerically and, for some flows, can even be calculated analytically.

Of course, most real flows are not invariant in the streamwise direction because of the ac-
tion of viscous forces. A more rigorous analysis, therefore, needs to consider the stream-
wise dependence of perturbations as the product of a function that varies on a fast stream-
wise lengthscale and another function that varies on a slow streamwise lengthscale. This is
the WKBJ approximation. This approximation is justifiable as long as the base flow varies
on a much longer lengthscale than the wavelength of the perturbations. Using an axisym-
metric base flow as an example, we take the axial and azimuthal velocity profiles at each
streamwise location and stretch them to infinity in the streamwise direction. (We have to
set the radial velocity to zero in order to satisfy continuity.) Then we examine each slice
separately. Reviews by [Huerre & Monkewitz (1990)] and [Huerre & Monkewitz (2000)]
and the paper by [Monkewitz, Huerre & Chomaz (1993)] describe this process formally
and in great detail. It is analogous to the two-timing approach to nonlinear problems that
evolve on two different timescales [Strogatz (2001)].

This reduction of a three-dimensional problem to a set of one-dimensional problems is the
basis for the local stability analysis of open shear flows. Local stability analysis is very
quick and sometimes remarkably accurate. These days, it is best used in conjunction with
global stability analysis because it provides useful information about the base flow that
cannot be obtained from a global analysis alone.

1.3 LINEARIZATION AND FOURIER DECOMPOSITION

The N-S equation and incompressibility condition are:
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The base flow is assumed to be a steady solution to (1.1) — i.e. it satisfies (1.1) when the
time derivative term is zero. The velocity and pressure are expressed as a sum of the base
flow components and the infinitesimal perturbation components, such that U = U + eu and
P=P+ €p, where € is small. These are substituted into (1.1) and then the steady solution
corresponding to the base flow is subtracted. The linearized Navier—Stokes equation is then
given by the highest order terms, which are all first order in e:
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Terms in higher orders of epsilon (in this case they are all in 2) are neglected. This is a set
of four partial differential equations (PDEs) in four unknown functions, (u,v,w,p), each
defined in three spatial dimensions, x, y, z, and one time dimension, .

Now we perform the Fourier decompositions in , y, and ¢ by substituting u(x, y, z,t) =
u(z) exp{i(kz + k,y — wt)} and p(z,y, 2, t) = p(z) exp{i(kx + kyy — wt)}. This re-
duces the four PDEs for four functions in four dimensions to four Ordinary Differential
Equations (ODEs) for four unknown functions (4, ¥, w, p), in one dimension, z. These
governing equations, together with boundary conditions for the unknown functions, com-
prise a one-dimensional eigenvalue problem. In other words, for specified values of k£ and
k,, the governing equations and boundary conditions can only be satisfied for certain val-
ues of w.

The governing equations can be solved simultaneously. (This is often the best way be-
cause it uses only first derivatives in the base flow velocity profile and is therefore less
susceptible to errors.) Alternatively, the four unknown functions can be reduced to one
unknown function, and the four equations reduced to one equation through substitution;
[Drazin & Reid (1981)] §25. A convenient trick in two spatial dimensions (i.e. with &k, =

0) is to eliminate p by substitution and then to solve for the streamfunction 1 = z/?(z)ei’”
instead: @ = 0v/0z, W = —ikw. This leads to the Orr-Sommerfeld (O-S) equation:
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It is easy to check that this equation is of the Sturm-Liouville type and therefore admits
solutions only for certain eigenvalue pairs of (w, k).

The analysis in two spatial dimensions is particularly common because we know from
Squire’s theorem that, for a planar flow in one direction, the two-dimensional eigenmodes
are always more unstable than their three-dimensional counterparts; [Drazin & Reid (1981)]
§25. In other words, the most unstable eigenmodes always have k£, = 0. Unfortunately,
this convenient trick masks the fact that three-dimensional perturbations tend to give rise
to the maximum transient growth, even though they do not have the maximum long term
(i.e. eigenvalue) growth.

The governing equations and boundary conditions, whether as four separate equations or
one single equation, are usually solved numerically with shooting methods or spectral
methods. Shooting methods are easier to understand but spectral methods are easier to
implement. Nick Trefethen’s book Spectral Methods in Matlab is an excellent tutorial,
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Figure 1.1. Waves often travel in packets and have a well-defined envelope. The phase velocity is
the velocity at which the wave crests travel. The group velocity is the velocity at which the envelope
travels.

with accompanying Matlab scripts, and contains a Chebyshev method that solves the O-S
equation.

Spectral methods express the governing equations and boundary conditions as a general-
ized matrix eigenvalue problem of the form

A(k)Y = wB(k)y. (1.6)

For each k, the permitted values of w are found by solving this matrix eigenvalue problem.
For some base flows, it is possible to derive an analytical relationship for w(k). Whether
expressed as a generalized matrix eigenvalue problem or as an analytical expression, the
relationship between permitted values of w and k is called the dispersion relation, for
reasons explained in the next section.

1.4 PHASE VELOCITY AND GROUP VELOCITY

The Fourier variables k£ and w have important physical relevance. The perturbations can
be written as u(z, z,t) = (z)e!*rTe~Fize~lwrtewit By considering how each of the four
exponential terms behaves as x and ¢ increase, it is easy to see that the perturbations are
wave-like and that k, is 27/, where A is the streamwise wavelength, k; is the decay rate
in space of the envelope of the waves, w, is the angular frequency of the waves, and w; is
the growth rate in time of the envelope of the waves.

The perturbations can also be written as u(x, z,t) = 0(z) exp{ik(x—ct)}, where c = w/k.
For a given k, the value of u is therefore constant along a particular ray with (xz — ct) =
constant. In other words, c is the velocity of the wave crests, which is known as the phase
velocity. If (and only if) w is directly proportional to k, then every wavenumber has the
same phase velocity and the medium is known as a non-dispersive medium.

In general, the perturbation consists of a superposition of many waves, which interfere
with each other constructively and destructively. The patterns of constructive and destruc-
tive interference usually cause the perturbation to have an identifiable envelope, as shown
in figure 1.1.. If the wavecrests of all wavenumbers move at the same phase velocity, then
this interference pattern, and therefore this envelope, also move at the phase velocity and
they do not change shape over time. If, however, the wavecrests of different wavenumbers
move at different phase velocities, then this interference pattern changes shape over time
and the envelope moves at a different velocity to the wave crests. The velocity of the en-
velope is known as the group velocity and it is equal to dw/dk. In this case, the medium is
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Figure 1.2. The base flows in this tutorial are all planar jets and wakes with top hat velocity profiles.
These flows have analytical dispersion relations, which can be calculated without spectral or shooting
methods.

known as a dispersive medium.

Perhaps surprisingly, the group velocity has more physical relevance than the phase veloc-
ity. This is because it is the velocity at which energy and information travel. For example,
light travels at 3 x 10% ms~! in a vacuum. A vacuum is a non-dispersive medium, so
the phase velocity equals the group velocity. Condensed matter is a dispersive medium,
however, so outside a vacuum the phase velocity of light does not equal the group veloc-
ity. In fact, the phase velocity of light outside a vacuum is greater than 3 x 108 ms™! (!),
but fortunately the group velocity, which is the speed at which information travels, is less
than 3 x 108 ms~!. The distinction between phase and group velocity is one of the most
important concepts in local stability analysis and we will return to it repeatedly.

1.5 THE DISPERSION RELATIONS FOR SIMPLE FLOWS

Most analyses of local stability are performed by solving the O-S equation numerically
using spectral methods in one dimension. Before such methods were available, disper-
sion relations for a few simple flows were derived analytically. These dispersion rela-
tions are used in this chapter because their qualitative behaviour is much the same as
that of the O-S equation, but they are easier to derive, understand, manipulate, and anal-
yse. They have come from [Rayleigh (1896)] §§365 — 369, [Drazin & Reid (1981)] §84-5,
[Yu & Monkewitz (1990)] and [Juniper (2007)] They are expressed in dimensionless form
in the format preferred by [Huerre & Monkewitz (2000)]: as a function that equals zero:
D = f(w,k) = 0. Itis easiest to explain the flow with the most features first and then
simplify it by removing the features one by one.

The flow with the most features is shown in figure 1.2.. It is a planar flow consisting of
a central flow with density p;, velocity U; and width 2h4, surrounded by two flows with
density po, velocity Uz and width ha. The velocities and densities are uniform except at the
shear layers between the fluids, where they jump discontinuously across an interface that
has surface tension 0. We will consider only varicose perturbations, in which the shear
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layers move in opposite directions, and sinuous perturbations, in which the shear layers
move in the same direction. Any perturbation can be expressed as a linear combination of
a varicose and sinuous perturbation. The dimensionless parameters are

e the shear ratio A = (U; — Uy) /(U + Us) ;

e the density ratio S = p;1/p2;

e the confinement ratio hso/hq;

e the surface tension X = 40/ (h1p2(Uy + Us)?).

Various symmetries in the model become more apparent if a slightly different set of ref-
erence scales and dimensionless parameters are used [Rees & Juniper (2009)], but the dis-
persion relations become less easy to read.

The dispersion relations are

e varicose perturbations of a confined planar jet/wake

D=S(1+A—w/k)?coth(&) + (1 — A —w/k)*coth(¢h) —EX =0 (1.7)

e sinuous perturbations of a confined planar jet/wake

D=S1+A—w/k)*tanh(¢) + (1 — A —w/k)? coth(¢h) — X =0 (1.8)

e varicose perturbations of an unconfined planar jet/wake

D=S(1+A—w/k)*coth(&) + (1 — A —w/k)> — €8 =0 (1.9)

sinuous perturbations of an unconfined planar jet/wake

D=S1+A—-w/k)*tanh(&) + (1 —A —w/k)?> =X =0 (1.10)

perturbations of an unconfined single shear layer
D=SA+A-w/k)P+(1—-A-w/k)?—£=0 (1.11)

(2 = 1 for an unconfined single shear layer because the surface tension defines the
reference lengthscale hy)

The variable ¢ is required in order to keep branch points off the k, axis, as described in
[Healey (2006)] and [Juniper (2007)]. It is given by & = +(k? 4 k2)'/% as k, — 0. Here,
however, we shall examine only £ > 0 and therefore £ can be replaced by k.

Surface tension is required in order to prevent w from becoming infinite as k becomes in-
finite. Surface tension has a strong effect on absolute instability, however, as described in
[Rees & Juniper (2009)]. An alternative strategy is to introduce a finite shear layer thick-
ness. This prevents w from becoming infinite and has only a mild effect on long wavelength
instabilities. Analytical dispersion relations exist for the analogous flows [Juniper (2007)].



CODING THE DISPERSION RELATIONS 7

1.6 CODING THE DISPERSION RELATIONS

It is quite easy (but rather tedious) to use the quadratic formula to derive ¢ = w/k as an ana-

Iytic function of k. It is quicker to use Matlab functions. The function fun_eval_c_single.m
evaluates the two values of ¢ for a given value of k. It uses the quadratic formula and then

uses a stencil to change Matlab’s default ordering of c1 and c2. (The stencil does not
become important until we consider the spatio-temporal analysis in section 1.11.)

The function has been constructed so that entire arrays of c1 and c2 can be calculated
simultaneously. This requires operators such as (. «) to be used instead of (x). The param-
eters A and S are held in a Matlab structure as param.L and param. S. This notation
makes it easy for a single script to call a variety of functions.

1. Write Matlab functions to calculate w/k for the remaining dispersion relations.
Name them
e fun eval_c_unconf_jetwake_sin.m
e fun eval_c_.unconf_jetwake_var.m
e fun eval_c_conf_jetwake_sin.m
e fun eval_c_conf_jetwake_var.m

2. Try calling these functions with the generic functions fun_eval_c.mand fun_eval_w.m
in order to become familiar with the program structure.

3. With the exception of the single shear layer, iterative procedures are required in
order to find k& as a function of w. These involve setting the function D to zero by
changing £ at given w. Write Matlab functions to calculate D for each dispersion
relation, given w and k. Name them

e fun eval D_single.m

e fun eval D_unconf_jetwake_sin.m
e fun_eval D unconf_jetwake_var.m
e fun eval D_conf_jetwake_sin.m

e fun_eval D_conf_jetwake_var.m
4. Try calling these functions with the generic function fun_eval_D.m.

5. Write a script that calculates w using the first set of functions and then checks that
this (w, k) pair satisfies D = 0 by calling the second set of functions.

These functions will be the building blocks for rest of this tutorial.

1.7 TEMPORAL STABILITY ANALYSIS

In a temporal stability analysis, we constrain k to be a real number. Physically, this means
that we consider only waves that do not grow or decay in the streamwise direction. We
then ask whether such waves grow or decay in time. An example is shown in figure 1.3.
(left) for a single shear layer with A = 0.9 and S = 1.



8

LOCAL LINEAR STABILITY ANALYSIS

o Single shear layer; A =0.9, S =1 07 A=09,S=1,Y=1,h=2
3 - -
& — First eigenvalue - single . )
= /\ — — Second eigenvalue 0.6 °© unconfﬁ!elwakeism
SN0 o unconf_jetwake_var]|
= S~ - L ) + conf_jetwake_sin
% T 3057 = conf_jetwake_var
B-1 g
0 1 = 04f
_10p £ 03
e &
;. 5t 0.2r
5 SR
=0 e 0.17
g
=5 - - ' . . . . .
0 1 2 3 4 0 0.5 1 L5 2 25
wavenumber, k wavenumber, k
Figure 1.3.  Left: the real and imaginary components of w(k) calculated with a temporal stability

analysis, in which k is constrained to be real. Right: the imaginary components of w(k) for the five
dispersion relations.

1.8

. Write a script called script_temporal_001.m to generate figure 1.3. (left).

. There are two regimes, either side of £ = 1.6. How do the waves behave in these

two regimes?

. Vary A and S to see how this model behaves.

. Write a script called script_temporal_002.m to perform the temporal analysis

on all the dispersion relations and to plot their growth rates as a function of positive
k on the same plot, as shown in figure 1.3.(right).

. What do you observe? In particular, how does confinement affect the temporal sta-

bility of the flows?

GROUP VELOCITY

The phase velocity ¢ = w/k is the velocity of wavecrests. The group velocity ¢, = dw/dk
is the velocity of wavepackets. In a dispersive medium, ¢ # c,.

1.

1.9

In a

Write a function called fun_eval_dwdk . mto evaluate the group velocity as a func-
tion of k. A first order finite difference method will be good enough.

Write a script called script_groupvel_001.m to compare the phase and group
velocities as shown in figure 1.4..

. Investigate the different dispersion relations at different parameter values. What do

you observe? Look particularly at unconfined low density jets (A ~ 1,5 < 1) at
small values of 2.

SPATIAL STABILITY ANALYSIS

spatial stability analysis, we constrain w to be a real number. Physically, this means

that we force sinusoidally at a particular point in space and see whether the resulting pertur-
bations grow (negative k;) or decay (positive k;) in space. This is known as the signalling
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Figure 1.4. The phase velocity (solid lines) and group velocity (dashed lines) as a function of

wavenumber, k, for a single shear layer with surface tension. This is a dispersive medium, which
means that waves at different wavenumbers travel at different speeds and that the group velocity does

not, in general, equal the phase velocity.
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Figure 1.5. The real and imaginary components of k, calculated with a spatial stability analysis,

in which w is constrained to be real. Left: the exact spatial analysis, performed via iteration from a
guessed value of k. Right: the approximate spatial analysis from Gaster’s transformation compared
with the exact spatial analysis, performed via iteration from Gaster’s value of k.
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problem.

Algorithm fun_eval_k.m uses an iterative technique to find k, given w and an ini-
tial guess for k. It uses Matlab’s function fsolve.m, which tries to set the output, D,
of fun_eval_ D_loc to zero by varying its argument k. This is where the functions
fun_eval_D_x .m become useful.

1. Write a script called script_spatial_001.m to perform a spatial stability anal-
ysis on a single shear layer with A = 0.5 and S = 1, as shown in figure 1.5..

2. What has happened at small w in this figure?
3. What is the most amplified frequency?
4. What happens to the most amplified frequency as A increases?

Spatial stability analyses are more difficult to perform than temporal stability analyses
and, as we shall see later, have no physical relevance when the flow is absolutely unstable
because the transient behaviour overwhelms the signal if the wave with zero group velocity
has positive growth rate.

1.10 GASTER’S TRANSFORMATION (1962)

In his 1962 JFEM paper [Gaster (1962)], Mike Gaster worked out the relationship between
temporal stability and spatial stability (Journal of Fluid Mechanics Vol 14 pp 222-224).
The angular frequency and wavenumber pairs from the temporal analysis are labelled w(T)
and k(T) respectively. The angular frequency and wavenumber pairs from the spatial anal-
ysis are labelled w(S) and k(S) respectively. He finds that these are approximately related
by:

wr(S) = we(T), (1.13)
wi(T) Owy
v~ o (1.14)

The final term in (1.14) can be written —Re(dw/dk) and is simply the real component of
the group velocity.

1. Write a script called script_spatial_002.mto compare k;(w, ) calculated with
script_spatial_002.m with that calculated from Gaster’s transformation, as
shown in figure 1.5. (right). (You can use Gaster’s transformation to improve the
initial guess of k for the spatial analysis.)

2. Vary S and A to discover when Gaster’s transformation works well and when it
works badly.

Gaster’s transformation begs the question of what happens when the real part of the group
velocity is zero. Is the spatial growth rate infinite? Rather than ponder this conundrum now,
it is better to progress to a spatio-temporal stability analysis, which will make everything
clear.
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Figure 1.6.  Contours of w;(k) (greyscale) and w-(k) (grey lines) for a single shear layer with
A =0.9,5 = 1. This is a spatio-temporal stability analysis in which both w and k are complex. The
points with dw/dk = 0 can be identified by eye (there is one in each frame). The thick black line is
w; = 0.

1.11 SPATIO-TEMPORAL STABILITY ANALYSIS

In a spatio-temporal analysis, k and w are both allowed to be complex numbers. Physically,
this means that we consider waves that grow or decay in the streamwise direction and that
grow or decay in time. A useful way to picture this is to imagine exciting every wave
simultaneously with an impulse at (z,?) = (0,0) and then observing the evolution of the
resulting wavepacket. This is known as an impulse response or, equivalently, the Green’s
function. (For the purists: we assume for now that the fluid is incompressible and therefore
that all information about the boundary conditions is conveyed instantly to the point of
impulse.) The response to any type of forcing can be found from this by convoluting the
impulse response with the forcing signal, but we will stick with the impulse response itself
because it tells us all that we need to know.

Only some waves are permitted (these are the ones that satisfy the dispersion relation).
They propagate away from the point of impulse at different velocities, given by their group
velocity dw/dk, and grow or decay at different rates, given by their growth rate, w;.

If every wave decays in time then the flow is stable. If some waves grow in time then the
flow is unstable and a further distinction is necessary. After a long time, the only wave to
remain at the point of impulse is the wave that has zero group velocity. If this wave decays
in time, then the impulse response decays to zero at the point of impulse and the flow is
called convectively unstable. If the wave grows in time, then the impulse response grows
to infinity at the point of impulse and the flow is called absolutely unstable.

In the next section, we will examine this in more detail. For now, however, we will find the
wave with zero group velocity by plotting contours of w in the complex k-plane.

1. For the single shear layer, write a script called script_spatemp_001.m to cal-
culate wy and wy on a grid of complex k with k. € [0,2] and k; € [—1,1]. Plot
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contours of w; and w, on the same plot, as in figure 1.6.. (The stencil becomes
useful here.) Plot the contour w; = 0 with double thickness.

2. What do you notice about the relationship between the contours of w; and the con-
tours of w,.?

3. Identify by eye the position where the group velocity is zero. Does it have positive
or negative growth rate?

4. Write a function called fun_eval_dwdkO0 .m that uses £solve to converge to this
point, given an initial guess, and then displays (w, k) at this point.

5. Write a script called script_click.m that asks the user to click near a point
where dw/dk = 0, then converges accurately to that point, then determines whether
the flow is absolutely or convectively unstable.

The contours of w; and w, are always at right angles to each other. Furthermore, the two
components of curvature on the surface w; (k) always have opposite sign. This means that
points where dw/dk = 0 are saddle points of w(k). In the long time limit, the impulse
response at the point of impulse is dominated by the behaviour of these saddle points. At a
saddle point, the values of w and k are called the absolute frequency and wavenumber and
are given the symbols wq and k.

1. Compare figure 1.3. with figure 1.6. to check that the temporal analysis corresponds
to a slice through w(k) along the k,. axis.

2. What does the spatial analysis correspond to in figure 1.6.?

3. Explain why a spatial analysis does not work for absolutely unstable flows.

1.11.1 The Briggs-Bers criterion

The aim of this section is to present a more rigorous calculation of the impulse response
and to show that some saddle points do not contribute to it. The concepts may be difficult
to grasp in a short time, but the main point is summarized at the end.

We want to evaluate
u(z, t) :/ / (k, w)elF7=t) de dk. (1.15)

To evaluate the response at the point of impulse, see [Huerre & Monkewitz (1990)], par-
ticularly equation (9), and [Huerre & Monkewitz (2000)], which gives more steps in the
calculation. To evaluate the response at every point in space, see [Healey (2006)], particu-
larly figure 11, and [Juniper (2007)], one result from which is shown in figure 1.7..

Figure 1.7. shows contours of the growth rate as a function of group velocity, (z/t, z/t),
for all the permitted waves in the impulse response. (It is for varicose perturbations of an
unconfined low density jet with A = 1/1.1 and S = 0.1.) The impulse response propa-
gates and grows at the point of impulse, (z/t, z/t) = 0, so this flow is absolutely unstable.
It grows fastest, however, in the downstream direction, x /¢ > 0. The maximum growth
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Figure 1.7.  This is the impulse response for varicose perturbations of an unconfined low density
jetwith A = 1/1.1, S = 0.1, and finite thickness shear layers. The impulse is at (x, z) = (0, 0) and
the resultant waves disperse at their individual group velocities in the x and z directions. The chart
plots the growth rate, w; , of the wave that dominates along each ray (z /¢, y/t), i.e. the wave that has
group velocity (z/t,y/t). We see that most of the wavepacket propagates and grows downstream (to
the right) but that some propagates and grows upstream (to the left). The growth rate at the point of
impulse (z/t,y/t) = (0,0) is positive, which means that this is an absolutely unstable flow.

rate of the impulse response (8.5) is given by the growth rate of the temporal stability anal-
ysis because, at this point in the impulse response, k; = 0.

The integral (1.15) can be evaluated by integrating either over w and then k, or over k and
then w. For these dispersion relations, it easiest to integrate over w first because, for each
k, there are only two permitted values of w. The integral becomes

u(z, ) = / ik, w)el k=1 () g | / ik, w)elk==w= (00 gp (1.16)
Initially, the integration path lies on the real k-axis but it can be shifted into the complex
k-plane without changing the integral, as long as it is not shifted through branch points or
poles (i.e. points where w = £00). The integral is easiest to evaluate if the integration path
is shifted onto lines of constant w, because then the phase of exp{i(kx — wt)} remains
constant and the integrand does not oscillate as k changes. (Remember that x = 0 because
we are looking at the point of impulse, so the only term that can oscillate as k varies is
exp(iw, (k)t).)

In order to pass from k = —oo to k = +o0, the integration path must cross some (but not
all) of the saddle points in the k-plane and, for each of these saddle points, there is only one
possible value of w,. This means that the integration path must cross these saddle points
at this value of w, and then change to another value of w, at points where w; is strongly
negative, so that the oscillating contribution to the integral there is negligible.

This is best explained by showing an example. Figure 1.8. shows contours of w; (k) for
varicose perturbations of a confined jet flow with A = 1, S = 1, h = 1.3, ¥ = 1. The
integration path needs to pass over two saddle points, s; and ss, in order to pass from
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Figure 1.8. Contours of w; (k) for varicose perturbations of a confined jet flow with surface tension,
showing the integration path from £k = —oo to k = +o00. The integration path passes over saddle
points s1 and s3, which means that they contribute to the integral. It does not pass over saddle points
S2q OF Sz, however, which means that they do not contribute to the integral. This is another way
to visualize the Briggs-Bers criterion, which states that a saddle point is only valid if it is pinched
between a k™ and a k™~ hill.
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Figure 1.9.  Contours of w; (k) for the same flow as figure 1.8. as the surface tension is reduced.
This reduction in 3 causes the s; saddle to move to lower w; and therefore causes the integration path
to pass over the sz, saddle point. When the surface tension tends to zero (not shown here) all the s2
saddle points move onto the integration path.

k = 0 to k = oo, but it misses out saddles s, and so;. As the surface tension reduces,
which is shown in figure 1.9., saddle s3, comes onto the integration contour. As it reduces
further, sop etc. come onto the contour too.

In the long time limit, the dominant contribution to the integral comes from the point on
the integration path with highest w;, which is always a saddle point. In fact, we already
knew that the dominant contribution comes from a saddle point because these are the only
points with zero group velocity. But now we know that only some saddle points contribute.
You will notice that, if you head directly up the hills (i.e. on lines of constant w,.) on either
side of the valid saddle points, one hill goes into the top half k-plane and the other hill goes
into the bottom half k-plane. This is the Briggs-Bers criterion. It is another way of stating
that the saddle point must lie on the integration path.

1. Write a script called script_spatemp_002.m to plot w; (k) for varicose pertur-
bations of a confined jet/wake flow with A =1, S =1, h = 1.3, ¥ = 1. Compare it
with figure 1.9..
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Figure 1.10.  Schlieren images of Helium jets (taken by Larry K. B. Li). These show the strong
beating that is characteristic of a globally unstable flow. The image on the right also shows side jets,
which are a secondary effect of this instability.

2. Investigate how the dominant saddle points change as S decreases, X decreases, and
h increases. Look particularly at the so, saddle.

3. Write a script called script_spatemp_003.m to repeat this for varicose pertur-
bations of an unconfined jet/wake flow with A = 1, .S = 1, > = 0. This corresponds
to an unconfined jet. Find the ss, saddle point exactly with script_click.m

The main point of this section is that only some saddle points contribute to the impulse
response and that, in the case of a low density jet with vanishing surface tension, the so,
saddle is one of these.

1.12 LOW DENSITY JETS

Low density round jets are globally unstable because of a sufficiently large region of ab-
solute instability at their base. Two examples are shown in figure 1.10.. Although these
jets are round, the dispersion relation fun_eval_*_uncon_jetwake_var.mcan model
them reasonably accurately. In these exercises, we will map the absolutely unstable region
of a low density jet in (A, S)-space.

1. Write a function called fun_eval_w01i, which takes in a value of A and returns
the growth rate, wy;, of the saddle point. The input arguments will have to be
(param, k_init, L, tol), where param contains all the parameters except L,
k_init is an initial guess for the wavenumber of the saddle point, and tol is the
tolerance required for fun_eval_dwdkO.m.

2. Embed fun_eval_w0i within another function called fun_eval_L, which uses
fsolve to reduce wy; to zero by changing L.
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Figure1.11. Absolute/Convective transition lines for unconfined planar jets and wakes as a function
of velocity ratio A and density ratio S. Left: created with script_SL_var_001.m (currently
incomplete). Right: from [Yu & Monkewitz (1990)].
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Figure 1.12. The absolute growth rate wo, as a function of the long streamwise distance, X . Left:
as calculated from the saddle points of the base flow. Right: after interpolation with a second order
polynomial and analytical continuation into the complex X -plane.

3. Write a script called script_SL_var, which varies S between 0.1 and 1 and plots
the values of A for which wgy; = 0, as in figure 1.11. (left).

4. Write a script called script_SL_var_002, which finds the absolutely unstable
regions for unconfined jets and wakes within the range S € [0.1,10] and A € [-2, 2].
Compare your results with those from [Yu & Monkewitz (1990)], which are shown
in figure 1.11. (right).

1.12.1 Calculating the linear global mode frequency

For flows that evolve slowly in the streamwise direction it is possible to combine the
slices in order to work out the global mode growth rate. The details are explained in
[Huerre & Monkewitz (1990)] and in more detail in [Monkewitz, Huerre & Chomaz (1993)].
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The first stage of this analysis is to calculate the absolute frequency wq as a function of the
downstream distance, X. (This is a function of the long lengthscale, X, rather than the
short lengthscale, ). To do this, we assume that wy(X ) can be continued analytically into
the complex X -plane. If wy(X) varies slowly in the X -direction and if wp;(X) reaches
a maximum within the domain being considered then wy(X) will have a saddle point at
some complex value of X close to the X, axis. The value of wy at this saddle point gives
the frequency and growth rate of the linear global mode, w,,.

It is not possible to continue w (X ) itself into the complex X -plane because we only have
information on the X, axis. Instead, we interpolate a polynomial through wo(X') and then
continue this polynomial into the complex X -plane. Then we look for saddle points of this
polynomial.

1. Write a script called script w0X_001.m which calculates wq(X) and ko(X) for
varicose perturbations of a uniform density jet in which A = 1.2 — 0.2X? and
X € [-1,1], as in figure 1.12. (left). (This is a crude model of the flow around a
Rankine body.) Save param, L, X, w0, and kO to file script w0X_001.mat

2. Write a script called script_ w0X_002.mat which uses polyfit to fit a second
order polynomial through wq(X) and plots contours of wy; and wy, in the complex
X-plane for X, € [-1,1] and X; € [-1, 1], as in figure 1.12. (right) Find the posi-
tion of the saddle point, (wg, X,). Save wg, and Xg to file script _ w0X_002.mat.

3. Try out different models for A(X) (e.g. A = 1.3 —0.1% X +0.1X3 — 0.3X%).

1.13 CALCULATING THE LINEAR GLOBAL MODE SHAPE

In order to calculate the linear global mode shape, the response of the whole flow must be
calculated at the frequency and growth rate of the linear global mode, w,. Each slice is
forced at wg and its streamwise wavenumber and growth rate, %, are calculated. For each
wg there are usually an infinite number of values of k. We need to choose the two that
pass closest to the saddle point of wy (k) at the X -position of the saddle point wy(X ). The
downstream-travelling wave is labelled k™ and the upstream-travelling wave is labelled
k™.

The corresponding global mode shape is calculated by integrating

CX
u(z, z,t) ~ Ag(X)a*(z; X) exp (;/ EH(Xw) dX' — o.)gt) , (1.17)
0

where, at the X -position of each slice, k™ is the local wavenumber downstream of X, k™
is the local wavenumber upstream of X, and G* (z; X) is the corresponding eigenfunc-
tion. The slowly-varying amplitude, Ay(X), is usually assumed to be uniform because the
influence of this assumption is much smaller than the influence of the inaccuracies in k.

Unfortunately, the dispersion relations studied here correspond to cases that are never sta-
ble. (They are either convectively unstable or absolutely unstable). This means that the
global mode grows without limit in the z-direction, which is not physical. This means
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Figure 1.13. The base flow (a), local stability properties (b—d) and global modes (e—f) of a confined
planar wake with h = 1, A™' = —1.2, Re = 400 and free slip boundaries; (a) streamlines;
(b) absolute growth rate, wo;; (c) spatial growthrates, kj‘ (+) and k; (o), calculated with the local
analysis, compared with k; (=) extracted from the global analysis (the latter is noisy at the upstream
end because the amplitude is small); (d) as for (c) but for the real spatial wavenumbers, kf; (&) o(x, 2)
of the first eigenmode calculated with the global analysis; (f) 0(x, z) of the first eigenmode calculated
with the local analysis. From [Juniper, Tammisola & Lundell (2011)].

that we have come as far as we can with these simple models. Nevertheless, if you want
to continue the analysis with different dispersion relations, the following exercises explain
how to calculate the x-dependence of the global mode by integrating (1.17).

1. Starting from the slice at the axial location of the saddle point wq(X), write a script
called script_kX_001.m that finds two different values of k(w,) on either side of
the saddle point at ky. Save kp and km to file script _kX_001.mat.

2. Starting from the values of kT and k™ at this slice, write a script called script_kX_002.m
that iterates through all the slices to find £+ (X) and £~ (X). Save X, ind, kpX and
kmX to file script kX _001.mat.

3. Write ascriptcalled script_uX_001 .mthatintegrates (1.17) to find the z-dependence
of the global mode.

Figure 1.13. shows a comparison between a global mode calculated with a 2D global analy-

sis, frame (f), with that from a local analysis, frame (g), taken from [Juniper, Tammisola & Lundell (2011)].
These are for a viscous wake flow, which becomes stable at x ~ 30. The two global modes

are remarkably similar. The main difference arises from the fact that the local analysis

slightly over-predicts the growth rate of the linear global mode. If this is corrected, the two

mode shapes are nearly identical.

Local stability analysis is only strictly valid when the flow is parallel or weakly non-
parallel. Nevertheless, it can be a useful diagnostic tool for strongly non-parallel flows.
In figure 1.14., for example, we see that the vortex breakdown bubble has two regions of
absolute instability: one in the bubble itself and one in the wake behind it. Both of these
regions can support a global mode. Indeed, this flow seems to behave as if it is being forced
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Figure 1.14. Top: streamlines (black) and azimuthal velocity (colours) for a vortex breakdown
bubble at Re = 400. Bottom: absolute growth rate, wo; (X ). From Qadri, Mistry & Juniper (2012)

by two coupled oscillators.

Finally, local stability analyses can also predict the frequency of saturated nonlinear global
modes; [Pier, Huerre & Chomaz].
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