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Motivation:  

•  bring together expertise in combustion physics, fluid dynamics, 
stability and control theory and identify areas of common interest 

•  provide training in the areas relevant to thermo-acoustic instabilities 

•  develop a framework for the analysis of thermo-acoustic instabilities  
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Motivation:  

•  bring together expertise in combustion physics, fluid dynamics, 
stability and control theory and identify areas of common interest 

•  provide training in the areas relevant to thermo-acoustic instabilities 

•  develop a framework for the analysis of thermo-acoustic instabilities  

Introduction to Stability Theory 
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Hydrodynamic stability theory is an established and mature field of fluid 
dynamics concerned with the description of disturbance behavior. 

A Brief History of Hydrodynamic Stability Theory 

Historical highlights 

1883   Reynolds’ experiment 
1907/08   Orr-Sommerfeld equation 
1929/33   Tollmien-Schlichting waves  
1963   Compressible theory (Mack)  
1965   Spatial stability theory (Gaster) 
1976   Maximum energy growth (Joseph)  
1983   Secondary instability theory (Orszag, Patera, Herbert) 
1990   Absolute/convective instabilities (Huerre, Monkewitz) 
1992   Parabolized stability equations (Bertolotti, Herbert) 
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Two concepts of stability 

Linear stability: we are interested in the minimum critical parameter 
above which a specific initial condition of infinitesimal amplitude grows 
exponentially  

Energy stability: we are interested in the maximum critical 
parameter below which a general initial condition of finite amplitude 
decays  monotonically  
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Two examples 

Rayleigh number (a non-dimensionalized temperature gradient) is the 
governing parameter 

Example 1: Rayleigh-Bénard convection (onset of convective instabilities 
can be described as an instability of the conductive state) 

Linear stability theory:  above a critical Rayleigh number of 1708 the 
conductive state becomes unstable to infinitesimal perturbations 

hot 

cold 
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Two examples 

Rayleigh number (a non-dimensionalized temperature gradient) is the 
governing parameter 

Example 1: Rayleigh-Bénard convection (onset of convective instabilities 
can be described as an instability of the conductive state) 

Energy stability theory:  below a critical Rayleigh number of 1708 finite-
amplitude perturbations superimposed on the conductive state decay 
monotonically in energy 

hot 

cold 
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Two examples 

Rayleigh number (a non-dimensionalized temperature gradient) is the 
governing parameter 

Example 1: Rayleigh-Bénard convection (onset of convective instabilities 
can be described as an instability of the conductive state) 

Experiments:  show the onset of convective instabilities at a critical 
Rayleigh number of about 1710 

hot 

cold 
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Two examples 

Reynolds number (a non-dimensionalized velocity) is the governing 
parameter 

Example 2: Plane Poiseuille flow (breakdown of the parabolic mean velocity 
profile) 

Linear stability theory:  above a critical Reynolds number of 5772 the 
parabolic velocity profile becomes unstable to infinitesimal perturbations 
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Two examples 

Reynolds number (a non-dimensionalized velocity) is the governing 
parameter 

Example 2: Plane Poiseuille flow (breakdown of the parabolic mean velocity 
profile) 

Energy stability theory:  below a critical Reynolds number of 49.6 finite-
amplitude perturbations superimposed on the parabolic velocity profile 
decay monotonically in energy 
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Two examples 

Reynolds number (a non-dimensionalized velocity) is the governing 
parameter 

Example 2: Plane Poiseuille flow (breakdown of the parabolic mean velocity 
profile) 

Experiments:  show the breakdown of the parabolic velocity profile at a 
critical Reynolds number of about 1000 
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Two examples 

Linear stability theory, energy stability theory and experiments are in 
excellent agreement for Rayleigh-Bénard convection 

Linear stability theory, energy stability theory and experiments show 
significant discrepancies for plane Poiseuille flow 

Can we explain the success and failure of stability theory for the 
above two examples? 

Is there a better way of investigating the stability of plane Poiseuille 
flow (and many other wall-bounded shear flows)?  

Questions:  
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A paradox 

The nonlinear terms in the Navier-Stokes equations conserve energy. 

The increase in energy for subcritical Reynolds numbers has to be 
accomplished by a linear process, without relying on an exponential 
instability; i.e. we need a linear instability without an unstable 
eigenvalue. 

Fact:  

Fact:  

During transition to turbulence we observe a substantial increase in kinetic 
perturbation energy, even for Reynolds numbers below the critical one. 

Conclusion:  
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Linear stability theory as a two-step procedure 

Standard linear stability calculations consist of a two-step procedure: 

 linearization and diagonalization.  

Most of the failures and shortcomings of linear stability theory have 
traditionally been blamed on the first step: linearization.  

The second step, diagonalization, has only been questioned recently. 
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Linearization: the governing equations 

Starting point are the Navier-Stokes equations (assuming incompressible flow) 

∂u
∂t

+ (u∇)u = −∇p +
1

Re
∇2u

∇ · u = 0

momentum 

mass 

Linearization step: assuming a steady mean flow U
decomposition of the flow field into mean and perturbation 

u = U + εu′
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Linearization: the governing equations 

we obtain the linearized Navier-Stokes equations (omitting primes) 

∂u
∂t

+ (U∇)u + (u∇)U = −∇p +
1

Re
∇2u

∇ · u = 0

further simplifying assumptions: uni-directional mean flow dependent on one 
spatial coordinate, e.g.,  

U = U(y)x̂
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Linearization: the governing equations 

we obtain the linearized Navier-Stokes equations (omitting primes) 

∇ · u = 0

further simplifying assumptions: wave-like perturbation in the homogeneous 
directions 

∂u
∂t

+ U
∂u
∂x

+ U ′vx̂ = ∇p +
1

Re
∇2u

u = û(y) exp(iαx + iβz)
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Linearization: the governing equations 

we obtain the linearized Navier-Stokes equations (omitting primes) 

with 

∂û
∂t

+ iαU û + U ′v̂x̂ = ∇̂p̂ +
1

Re
∇̂2û

∇̂ · û = 0

∇̂ =




iα
D
iβ



 ∇̂2 = D2 − (α2 + β2)︸ ︷︷ ︸
k2

D =
∂

∂y
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Linearization: the governing equations 

it is convenient to eliminate the pressure (and the continuity equation) by 
choosing the normal velocity and normal vorticity as the dependent variables 

∂

∂t

(
v̂
η̂

)
=

(
LOS 0
LC LSQ

) (
v̂
η̂

)

LOS

LSQ

LC

= Orr-Sommerfeld operator 

= Squire operator 

= coupling operator 
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Linearization: the governing equations 

Final step: discretization in the inhomogeneous direction (y) using spectral, 
compact- or finite-difference methods  

d

dt

(
v
η

)
=

(
LOS 0
LC LSQ

)

︸ ︷︷ ︸
L

(
v
η

)

︸︷︷︸
q

d

dt
q = Lq
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Linearization: the governing equations 

Formally, this equation has a solution in form of the matrix exponential of L.  

d

dt
q = Lq

q = exp(tL)q0

The matrix exponential of L is the stability operator after the linearization 
step.  

q0 = q(t = 0)
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Linearization: the governing equations 

We can redefine the concept of stability based on the matrix exponential by 
considering the growth of perturbation energy over time.  

q = exp(tL)q0

G(t) = max
q0

‖q‖2

‖q0‖2

G(t) represents the amplification of perturbation energy maximized over all 
initial conditions. 
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Linearization: the governing equations 

We can redefine the concept of stability based on the matrix exponential by 
considering the growth of perturbation energy over time.  

q = exp(tL)q0

G(t) = max
q0

‖q‖2

‖q0‖2

G(t) represents the amplification of perturbation energy maximized over all 
initial conditions. 

= max
q0

‖ exp(tL)q0‖2

‖q0‖2
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Linearization: the governing equations 

We can redefine the concept of stability based on the matrix exponential by 
considering the growth of perturbation energy over time.  

q = exp(tL)q0

G(t) = max
q0

‖q‖2

‖q0‖2

G(t) represents the amplification of perturbation energy maximized over all 
initial conditions. 

= ‖ exp(tL)‖2
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Diagonalization: eigenvalue analysis 

In general, the matrix exponential is difficult to compute. In its place, 
eigenvalues of L have been used as proxies.  

In traditional stability analysis, the behavior of G(t) is deduced from the 
eigenvalues of L.  

‖ exp(tL)‖2 = ‖ exp(tSΛS−1)‖2 = ‖S exp(tΛ)S−1‖2

L = SΛS−1
eigenvalue decomposition 

traditional stability analysis 

Do the eigenvalues of L capture the behavior of G(t) ?  
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Diagonalization: eigenvalue analysis 

We can answer this question by computing upper and lower bounds 
(estimates) on G(t).  

lower bound 

The energy cannot decay at a faster rate than the one given by the least stable 
eigenvalue λmax

e2tλmax ≤ ‖ exp(tL)‖2

upper bound 

For the upper bound we use the eigenvalue decomposition of L.  

‖ exp(tL)‖2 = ‖S exp(tΛ)S−1‖2

≤ ‖S‖2‖S−1‖2e2tλmax
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Diagonalization: eigenvalue analysis 

We can answer this question by computing upper and lower bounds 
(estimates) on G(t).  

e2tλmax ≤ ‖ exp(tL)‖2 ≤ ‖S‖2‖S−1‖2e2tλmax

Two cases can be distinguished: 

κ(S) = ‖S‖2‖S−1‖2 = 1

κ(S) = ‖S‖2‖S−1‖2 " 1

upper and lower bound coincide: the energy 
amplification is governed by the least stable 
eigenvalue 

upper and lower bound can differ significantly: 
the energy amplification is governed by the least 
stable eigenvalue only for large times 
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Diagonalization: eigenvalue analysis 

This suggests distinguishing two different classes of stability problems.  

κ(S) = ‖S‖2‖S−1‖2 = 1

κ(S) = ‖S‖2‖S−1‖2 " 1

normal stability problems 

•  orthogonal eigenvectors 
•  eigenvalye analysis captures the dynamics 

nonnormal stability problems 

•  non-orthogonal eigenvectors 
•  eigenvalye analysis captures the asymptotic 
dynamics, but not the short-time behavior 
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Diagonalization: eigenvalue analysis 

The nonnormality of the system can give rise to transient energy amplification.  

Even though we experience exponential decay for large times, the non-
orthogonal superposition of eigenvectors can lead to short-time growth of 
energy.   

Geometric interpretation:  



Indo-UK Workshop on Thermoacoustic Instabilities, January 2009 

Nonmodal stability analysis 

Is there a better way of describing the short-time dynamics of nonnormal 
stability problems ?  κ(S) = ‖S‖2‖S−1‖2 " 1

We start with a Taylor expansion of the matrix exponential about t=0.  

E(t) = 〈q, q〉 = ‖q‖2

= 〈exp(tL)q0, exp(tL)q0〉
≈ 〈(I + tL)q0, (I + tL)q0〉
≈ 〈q0, q0〉 + t 〈q0, (L + LH)q0〉
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Nonmodal stability analysis 

The initial energy growth rate is given by 

E(t) ≈ 〈q0, q0〉 + t 〈q0, (L + LH)q0〉

1
E

dE

dt

∣∣∣∣
t=0+

=
〈q0, (L + LH)q0〉

〈q0, q0〉

(L + LH)

1
E

dE

dt

∣∣∣∣
t=0+

= λmax(L + LH)

is Hermitian (symmetric) 

numerical abscissa of L 



Indo-UK Workshop on Thermoacoustic Instabilities, January 2009 

Nonmodal stability analysis 

The numerical abscissa can be generalized to the numerical range.  

d

dt
‖q‖2 =

〈
d

dt
q, q

〉
+

〈
q,

d

dt
q

〉

= 〈Lq, q〉 + 〈q, Lq〉

= 2Real {〈Lq, q〉}

F(L) =
{

z | z =
〈Lq, q〉
〈q, q〉

}Definition of the numerical range:  

set of all Rayleigh quotients of L  
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Nonmodal stability analysis 

F(L) =
{

z | z =
〈Lq, q〉
〈q, q〉

}

Three important properties of the numerical range: 

1.  The numerical range is convex.  

2.   The numerical range contains the spectrum of L.  

3.   For normal L, the numerical range is the convex hull of the spectrum. 

set of all Rayleigh quotients of L  
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Nonmodal stability analysis 

F(L) =
{

z | z =
〈Lq, q〉
〈q, q〉

}
set of all Rayleigh quotients of L  

Illustration:  

A =




−5 4 4

−2− 2i 4
−0.3 + i





The numerical range is 
substantially larger than the 
convex hull of the spectrum. 

numerical abscissa 
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Nonmodal stability analysis 

F(L) =
{

z | z =
〈Lq, q〉
〈q, q〉

}
set of all Rayleigh quotients of L  

Illustration:  

The numerical range is the 
convex hull of the spectrum. 

A =




−5

−2− 2i
−0.3 + i




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Nonmodal stability analysis 

For nonnormal stability problems:  

The numerical abscissa (numerical range) governs the very 
short time behavior. The sign of the numerical abscissa 
determines initial energy growth or decay.  

The least stable eigenvalue governs the long time behavior. 
The sign of the real part of          determines asymptotic 
energy growth or decay.  

λmax
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Nonmodal stability analysis 

For nonnormal stability problems:  

The numerical abscissa (numerical range) governs the very 
short time behavior. The sign of the numerical abscissa 
determines initial energy growth or decay.  

The least stable eigenvalue governs the long time behavior. 
The sign of the real part of          determines asymptotic 
energy growth or decay.  

λmax

revisit Rayleigh-Bénard convection and plane Poiseuille flow 
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Nonmodal stability analysis 

Rayleigh-Bénard convection is a normal stability problem 

The numerical range is the convex hull of the spectrum.  

The numerical range and the spectrum cross into the unstable 
half-plane at the same Rayleigh number.   

Initial energy growth and asymptotic instability occur at the 
same Rayleigh number.   

The spectrum governs the perturbation 
dynamics at all times.   

Ralin = Raener = 1708

hot 

cold 
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Nonmodal stability analysis 

plane Poiseuille flow is a nonnormal stability problem 

The numerical range is larger than the convex hull of the spectrum.  

The numerical range crosses into the unstable half-plane 
« before » the spectrum crosses into the unstable half-plane.   

Initial energy growth is possible « before » asymptotic 
instability occurs.   

The spectrum governs the perturbation 
dynamics only in the asymptotic limit of 

Relin = 5772! Reener = 49.6

t→∞
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Nonmodal stability analysis 

For intermediate time, can we determine or estimate the amount of 
maximum transient growth?  

taking the Laplace transform of the matrix exponential 

q = exp(tL)q0 q̃ =
∫ ∞

0
e−st exp(tL)q0 dt = (L− sI)−1q0

‖(L− sI)−1‖ ≤
∫ ∞

0
‖ exp(tL)‖|e−st| dt

≤ 1
Real{s} max

t≥0
‖ exp(tL)‖

Gmax ≥ max
Real{s}

Real{s}‖(L− sI)−1‖ lower bound for maximum transient 
growth (Kreiss constant) 

How far does the resolvent contours protrude into the unstable half-plane? 
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Nonmodal stability analysis 

For intermediate time, can we determine or estimate the amount of 
maximum transient growth?  

recalling Cauchy’s integral formula 

f(a) =
1

2πi

∮

Γ
f(z)(z − a)−1 dz

exp(tL) =
1

2πi

∮

Λ
ezt(zI − L)−1 dz

Gmax ≤
1
2π

∮

Λ
‖(zI − L)−1‖ |dz| upper bound for maximum 

transient growth (Cauchy integral) 

applying matrix-version of Cauchy’s integral formula to exponential function 
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Nonmodal stability analysis 

The resolvent norm contours for normal matrices consist of the union of 
disks about the eigenvalues of L.  

A =




−5

−2− 2i
−0.3 + i





normal matrix 
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Nonmodal stability analysis 

The resolvent norm contours for normal matrices consist of the union of 
disks about the eigenvalues of L.  

non-normal matrix 

A =




−5 4 4

−2− 2i 4
−0.3 + i




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Nonmodal stability analysis 

Summary 

max
Real{s}

Real{s}‖(L− sI)−1‖ ≤ Gmax ≤
1
2π

∮

Λ
‖(zI − L)−1‖ |dz|

1
E

dE

dt

∣∣∣∣
t=0+

= λmax(L + LH)

G(t→∞) = lim
t→∞

‖ exp(tL)‖ = etλmax

short time 

intermediate time 

long time 

(numerical abscissa) 

(resolvent norm) 

(eigenvalues) 



Indo-UK Workshop on Thermoacoustic Instabilities, January 2009 

Nonmodal stability analysis 

additional interpretation of the resolvent norm: eigenvalue sensitivity 

For a well-posed system we expect small perturbations to have a small effect. 
Let us perturb our matrix L by random matrices of small norm and estimate the effect 
on the eigenvalues. 

(L + E − λI)u = 0 ‖E‖ = ε

(L− λI)u = −Eu

‖(L− λI)u‖ ≤ ε‖u‖

‖(L− λI)−1‖ ≥ ε−1

The resolvent contours contain eigenvalues of the perturbed matrix.  

Highly sensitive eigenvalues are often the « first sign » of non-normality.  
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Nonmodal stability analysis 

The energy amplification curve G(t) is the envelope over many individual 
growth curves.  
For each point on this curve, a specific initial condition reaches its maximum 
energy amplification at this point (in time).   
Can we recover the initial condition that results in the maximum energy 
amplification at a given time?              optimal initial condition 
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Nonmodal stability analysis 

equation that governs the optimal initial condition 

exp(t∗L)q0 = q(t∗) q0

q(t∗)

Assume that the initial condition satisfies                      and normalize the 
output such that  

exp(t∗L) q̄0 = ‖ exp(t∗L)‖ q̄(t∗)

‖q̄(t∗)‖ = 1

input (initial condition) 

output (final condition) 

‖q0‖ = 1

input propagator amplification output 
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Nonmodal stability analysis 

exp(t∗L) q̄0 = ‖ exp(t∗L)‖ q̄(t∗)
input propagator amplification output 

The singular-value decomposition of a matrix A is  

A = UΣV H
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Nonmodal stability analysis 

exp(t∗L) q̄0 = ‖ exp(t∗L)‖ q̄(t∗)
input propagator amplification output 

The singular-value decomposition of a matrix A is  

A = UΣV H

unitary 
(orthogonal) 

unitary 
(orthogonal) 

diagonal 
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Nonmodal stability analysis 

exp(t∗L) q̄0 = ‖ exp(t∗L)‖ q̄(t∗)
input propagator amplification output 

The singular-value decomposition of a matrix A is  

AV = UΣ

=A UV Σ
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Nonmodal stability analysis 

exp(t∗L) q̄0 = ‖ exp(t∗L)‖ q̄(t∗)
input propagator amplification output 

The singular-value decomposition of a matrix A is  

AV = UΣ

=A v1 u1

σ1 = ‖A‖
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Nonmodal stability analysis 

exp(t∗L) q̄0 = ‖ exp(t∗L)‖ q̄(t∗)
input propagator amplification output 

The singular-value decomposition of our matrix exponential at      is  

=v1 u1exp(t∗L)

G(t∗) = ‖ exp(t∗L)‖

svd (exp(t∗L)) = UΣV H

t∗
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Nonmodal stability analysis 

exp(t∗L) q̄0 = ‖ exp(t∗L)‖ q̄(t∗)
input propagator amplification output 

=v1 u1exp(t∗L)

G(t∗) = ‖ exp(t∗L)‖

optimal initial condition 
is the left principal 
singular vector 

Optimal final condition  
is the right principal 
singular vector 
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Nonmodal stability analysis 

often we are interested in the response of our fluid system to external 
forces (modelling free-stream turbulence, acoustic waves, wall-
roughness etc.)  

in this case, our governing equation can be formulated as  

d

dt
q = Lq + f f model of external forces 

the response to forcing (particular solution, i.e., zero initial condition) is  

qp =
∫ t

0
exp((τ − t)L)f(τ) dτ

(memory integral) 
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Nonmodal stability analysis 

for the special case of harmonic forcing 

this simplifies to  

f = f̂eiωt

q̂p = (iω − L)−1f̂
and the optimal response (optimized over all possible forcing functions) becomes 

R(ω) = max
f̂

‖q̂p‖
‖f̂‖

= max
f̂

‖(iω − L)−1f̂‖
‖f̂‖

= ‖(iω − L)−1‖

(resolvent norm) 



Indo-UK Workshop on Thermoacoustic Instabilities, January 2009 

Nonmodal stability analysis 

eigenvalue-based analysis recovers the classical resonance condition  

‖(iω − L)−1‖ = ‖S(iω − Λ)−1S−1‖ ≤ κ(S)
1

dist{iω,Λ}

for a  normal system, the classical resonance condition (closeness of forcing 
frequency to one of the eigenfrequencies) holds 

for a non-normal system, we can have a pseudo-resonance (large response to 
outside forcing) even though the forcing frequency is far from an eigenfrequency 
of the linear system 
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Nonmodal stability analysis 

forcing 
(unit energy) 

transfer function amplification response  
(unit energy) 

=v1 u1

optimal harmonic forcing 
is the left principal 
singular vector 

optimal harmonic response 
is the right principal  
singular vector 

to obtain the optimal forcing we proceed as before (i.e., take the svd) 

(iω∗ − L)−1 f̄ = ‖(iω∗ − L)−1‖ q̄p

(iω∗ − L)−1

R(ω∗) = ‖(iω∗ − L)−1‖
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Nonmodal stability analysis 

Example: plane Poiseuille flow 

numerical range 
Kreiss constant  
(resolvent norm) 

eigenvalues 
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Nonmodal stability analysis 

Example: plane Poiseuille flow 

neutral curve  

R
e

=
57

72

transient growth 

exponential  
growth 

monotonic decay 
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Nonmodal stability analysis 

Example: plane Poiseuille flow 

α = 1 β = 1 Re = 2500 α = 0 β = 2 Re = 2500
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Nonmodal stability analysis 

Example: plane Poiseuille flow 

α = 1 β = 1 Re = 2500 α = 0 β = 2 Re = 2500
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Nonmodal stability analysis 

Example: plane Poiseuille flow 

largest exponential growth (Tollmien-Schlichting wave) 

largest transient  
growth (streaks) 

three-dimensional impulse response 
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Generalizations of nonmodal stability analysis 

Various generalizations of nonmodal stability analysis are possible which allow us to 
account for additional physical effects, such as  

•  stochastic forcing 

•  parameter and mean-flow uncertainty                  

•  time-periodic and generally time-dependent flow 

•  nonlinear perturbation dynamics  

•  multiple inhomogeneous directions/complex geometry  
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Generalizations of nonmodal stability analysis 

Various generalizations of nonmodal stability analysis are possible which allow us to 
account for additional physical effects, such as  

•  stochastic forcing 

•  parameter and mean-flow uncertainty                  

•  time-periodic and generally time-dependent flow 

•  nonlinear perturbation dynamics  

•  multiple inhomogeneous directions/complex geometry  

algebraic Lyapunov analysis  
transfer functions 

differential Lyapunov analysis 

pseudo-Floquet analysis  
adjoint analysis 

adjoint analysis  
with check-pointing 

global mode analysis 



Various generalizations of nonmodal stability analysis are possible which allow us to 
account for additional physical effects, such as  

•  stochastic forcing 

•  parameter and mean-flow uncertainty                  

•  time-periodic and generally time-dependent flow 

•  nonlinear perturbation dynamics  

•  multiple inhomogeneous directions/complex geometry  
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Generalizations of nonmodal stability analysis 

algebraic Lyapunov analysis  
transfer functions 

differential Lyapunov analysis 

pseudo-Floquet analysis  
adjoint analysis 

adjoint analysis  
with check-pointing 

global mode analysis 
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Generalizations of nonmodal stability analysis 

pseudo-Floquet analysis  
adjoint analysis 

In many industrial applications (e.g., turbomachinery) the mean flow is periodic 
in time due to an oscillatory pressure gradient 

We have  

d

dt
q = L(t)q L(t + T ) = L(t)

period T 

with the formal solution   

q(t) = A(t)q0 initial condition 
propagator 

final solution 
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Generalizations of nonmodal stability analysis 

pseudo-Floquet analysis  
adjoint analysis 

periodicity requires that 

A(t + T ) = A(t) A(T ) = A(t) C

monodromy matrix 
(mapping over one period) 

qn = C qn−1 = Cn q0
initial state 
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Generalizations of nonmodal stability analysis 

pseudo-Floquet analysis  
adjoint analysis 

qn = C qn−1 = Cn q0

energy amplification from period to period 

G2
n = max

q0

‖qn‖2

‖q0‖2
= max

q0

‖Cnq0‖2

‖q0‖2
= ‖Cn‖2

The eigenvalues of C are known as Floquet multipliers. 

Question: Do the Floquet multipliers describe the behavior of             ?  ‖Cn‖2
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Generalizations of nonmodal stability analysis 

pseudo-Floquet analysis  
adjoint analysis 

as before, let us compute bounds 

ρ2n ≤ ‖Cn‖2 ≤ κ2(S)ρ2n

largest Floquet 
multiplier 

Conclusion: only for normal monodromy matrices does the largest Floquet 
multiplier describe the behavior from period to period  

for nonnormal monodromy matrices there is a potential for transient 
amplification from period to period; only the asymptotic behavior                  
is governed by the largest Floquet multiplier  

n→∞
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Generalizations of nonmodal stability analysis 

pseudo-Floquet analysis  
adjoint analysis 

Example: pulsatile channel flow 

all Floquet multipliers are inside 
the unit disk indicating asymptotic 
stability (contractivity) as  n→∞
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Generalizations of nonmodal stability analysis 

pseudo-Floquet analysis  
adjoint analysis 

Example: pulsatile channel flow 

all Floquet multipliers are inside 
the unit disk indicating asymptotic 
stability (contractivity) as  n→∞

the resolvent contours reach 
outside the unit disk suggesting 
initial transient growth from period 
to period 
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Generalizations of nonmodal stability analysis 

pseudo-Floquet analysis  
adjoint analysis 

Example: pulsatile channel flow 

transient growth 

asymptotic  
contractivity 
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Generalizations of nonmodal stability analysis 

pseudo-Floquet analysis  
adjoint analysis 

Example: pulsatile channel flow 

transient growth 

asymptotic  
contractivity 

start 

large inter-period  
amplification 
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Generalizations of nonmodal stability analysis 

pseudo-Floquet analysis  
adjoint analysis 

Example: pulsatile channel flow 

Can we analyze the amplification of energy between one period, i.e., for a 
non-periodic system matrix ? 

d

dt
q = L(t)q

q(t) = A(t) q0

We have 

with the formal solution initial condition 
propagator final solution 
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Generalizations of nonmodal stability analysis 

pseudo-Floquet analysis  
adjoint analysis 

Example: pulsatile channel flow 

We can formulate the optimal amplification of energy as 

G(t)2 = max
q0

〈q, q〉
〈q0, q0〉

= max
q0

〈A(t)q0, A(t)q0〉
〈q0, q0〉

= max
q0

〈AH(t)A(t)q0, q0〉
〈q0, q0〉
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Generalizations of nonmodal stability analysis 

pseudo-Floquet analysis  
adjoint analysis 

Example: pulsatile channel flow 

G(t)2 = max
q0

〈AH(t)A(t)q0, q0〉
〈q0, q0〉

is a normal matrix AHA

the maximum is achieved for the principal eigenvector of  AHA

the principal eigenvector (and eigenvalue) can be found by power iteration  

q(n+1)
0 = ρ(n)AHA q(n)

0
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Generalizations of nonmodal stability analysis 

pseudo-Floquet analysis  
adjoint analysis 

Example: pulsatile channel flow 

q(n+1)
0 = ρ(n)AHA q(n)

0

break to power iteration into two pieces 

w(t) = A q(n)
0

propagation of initial condition forward in time 

first step 
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Generalizations of nonmodal stability analysis 

pseudo-Floquet analysis  
adjoint analysis 

Example: pulsatile channel flow 

q(n+1)
0 = ρ(n)AHA q(n)

0

break to power iteration into two pieces 

propagation of final condition backward in time 

second step q(n+1)
0 = ρ(n)AH(t)w(t)



 time-periodic and generally time-dependent flow 

Indo-UK Workshop on Thermoacoustic Instabilities, January 2009 

Generalizations of nonmodal stability analysis 

pseudo-Floquet analysis  
adjoint analysis 

Example: pulsatile channel flow 

q(n+1)
0 = ρ(n)AHA q(n)

0

q(n)
0 A

w(t) = Aq(n)
0

AHAHAq(n)
0

ρ(n) direct problem 

adjoint problem 

scaling 

updating 
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Generalizations of nonmodal stability analysis 

pseudo-Floquet analysis  
adjoint analysis 

Example: pulsatile channel flow 

q(n)
0 A

w(t) = Aq(n)
0

AHAHAq(n)
0

ρ(n) direct problem 

adjoint problem 

scaling 

updating 

      can be any discretized solution operator. The above technique (adjoint 
looping) can be applied to general time-dependent stability problems.  
A
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Generalizations of nonmodal stability analysis 

pseudo-Floquet analysis  
adjoint analysis 

Example: pulsatile channel flow 

applying adjoint looping to the 
pulsatile (inter-period) stability 
problem 

one period 

significant inter-period 
transient energy growth 
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Generalizations of nonmodal stability analysis 

pseudo-Floquet analysis  
adjoint analysis 

Another look at the direct-adjoint system  

q(n)
0 A

w(t) = Aq(n)
0

AHAHAq(n)
0

direct problem 

adjoint problem 

flow information 

sensitivity/gradient information 
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Generalizations of nonmodal stability analysis 

pseudo-Floquet analysis  
adjoint analysis 

reformulate the optimal growth problem variationally 

we wish to optimize 
J =

‖q‖2

‖q0‖2
→ max

subject to the constraint d

dt
q − Lq = 0
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Generalizations of nonmodal stability analysis 

pseudo-Floquet analysis  
adjoint analysis 

rather than substituting the constraint directly into the cost functional … 

d

dt
q − Lq = 0

J =
‖q‖2

‖q0‖2
=
‖ exp(tL)q0‖2

‖q0‖2
→ max
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Generalizations of nonmodal stability analysis 

pseudo-Floquet analysis  
adjoint analysis 

… we enforce the equation via a Lagrange multiplier 

J =
‖q‖2

‖q0‖2
−

〈
q̃,

(
d

dt
q − Lq

)〉
→ max

q̃

This has the advantage that the solution to the governing equation does 
not have to known explicitly.  

Other constraints (such as initial and boundary conditions) can be 
added.  
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Generalizations of nonmodal stability analysis 

pseudo-Floquet analysis  
adjoint analysis 

for an optimum we have to require all first variations of J to be zero   

δJ

δq̃
= 0

δJ

δq
= 0

J =
‖q‖2

‖q0‖2
−

〈
q̃,

(
d

dt
q − Lq

)〉
→ max

〈
δq̃,

(
d

dt
q − Lq

)〉
= 0

〈
q̃,

(
d

dt
δq − L δq

)〉
= 0
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Generalizations of nonmodal stability analysis 

pseudo-Floquet analysis  
adjoint analysis 

for an optimum we have to require all first variations of J to be zero   

δJ

δq̃
= 0

δJ

δq
= 0

J =
‖q‖2

‖q0‖2
−

〈
q̃,

(
d

dt
q − Lq

)〉
→ max

〈
q̃,

(
d

dt
δq − L δq

)〉
= 0

d

dt
q − Lq = 0
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Generalizations of nonmodal stability analysis 

pseudo-Floquet analysis  
adjoint analysis 

for an optimum we have to require all first variations of J to be zero   

δJ

δq̃
= 0

δJ

δq
= 0

J =
‖q‖2

‖q0‖2
−

〈
q̃,

(
d

dt
q − Lq

)〉
→ max

d

dt
q − Lq = 0

〈(
− d

dt
q̃ − LH q̃

)
, δq

〉
= 0
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Generalizations of nonmodal stability analysis 

pseudo-Floquet analysis  
adjoint analysis 

for an optimum we have to require all first variations of J to be zero   

δJ

δq̃
= 0

δJ

δq
= 0

J =
‖q‖2

‖q0‖2
−

〈
q̃,

(
d

dt
q − Lq

)〉
→ max

d

dt
q − Lq = 0

− d

dt
q̃ − LH q̃ = 0

direct problem 

adjoint problem 
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Generalizations of nonmodal stability analysis 

pseudo-Floquet analysis  
adjoint analysis 

adjoint variables can be interpreted as sensitivities  

J = obj−
〈

q̃,

(
d

dt
q − Lq

)〉
→ max

d

dt
q − Lq = f

external force 

δJ = −〈q̃, δf〉

let us add an external body force to the governing equations 
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Generalizations of nonmodal stability analysis 

pseudo-Floquet analysis  
adjoint analysis 

adjoint variables can be interpreted as sensitivities  

J = obj−
〈

q̃,

(
d

dt
q − Lq

)〉
→ max

d

dt
q − Lq = f

external force 

let us add an external body force to the governing equations 

∇fJ = −q̃
sensitivity to external body force 
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Generalizations of nonmodal stability analysis 

pseudo-Floquet analysis  
adjoint analysis 

Example: which adjoint variable measures the sensitivity to a mass source/sink?  

enforcing momentum 
conservation 

enforcing mass 
conservation 

J = obj− 〈ũ, NS(u)〉 − 〈ξ,∇ · u〉

−〈ξ,∇ · u〉 〈∇ξ, δu〉integration 

by parts 

ξ is the adjoint pressure 
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Generalizations of nonmodal stability analysis 

pseudo-Floquet analysis  
adjoint analysis 

Example: which adjoint variable measures the sensitivity to a mass source/sink?  

enforcing momentum 
conservation 

enforcing mass 
conservation 

J = obj− 〈ũ, NS(u)〉 − 〈ξ,∇ · u〉

∇ · u = Q δJ = 〈ξ, δQ〉
assuming a mass source/sink  

adjoint pressure =  
sensitivity to a mass source/sink  
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Generalizations of nonmodal stability analysis 

pseudo-Floquet analysis  
adjoint analysis 

for the incompressible Navier-Stokes equations  

∇ · u = Q

u = uw on y = 0

∇FJ = ũ

∇QJ = p̃

∂u
∂t

+ advdiff(U,u) +∇p = F

∇uwJ = σ̃|w

forcing sensitivity 



nonlinear perturbation dynamics   
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Generalizations of nonmodal stability analysis 

adjoint analysis  
with check-pointing 

the variational formulation also allows us to add nonlinear constraints to the 
cost functional 

J = obj−
〈

q̃,

(
d

dt
q −N(q)

)〉
→ max

nonlinear Navier-Stokes equations 

How does this affect the adjoint looping ?  



nonlinear perturbation dynamics   
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Generalizations of nonmodal stability analysis 

adjoint analysis  
with check-pointing 

Example: nonlinear advective terms 

first variation 〈ũ,u∇u〉 〈−u∇ũ, δu〉

We have direct terms appearing in the adjoint equation. 



nonlinear perturbation dynamics   

Generalizations of nonmodal stability analysis 

adjoint analysis  
with check-pointing 

q(n)
0 direct nonlinear problem 

linear adjoint problem 

u∇u

−u∇ũ

u(0) u(t)· · · · · ·· · ·
the flow fields at the forward 
sweep have to be saved and 
injected into the backward 
sweep 

checkpointing 

Indo-UK Workshop on Thermoacoustic Instabilities, January 2009 



multiple inhomogeneous directions/complex geometry  
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Generalizations of nonmodal stability analysis 

global mode analysis 

for most industrial applications we cannot assume the existence of 
homogeneous directions that can be treated by a Fourier transform 

rather, the eigenfunction will depend on more than one inhomogeneous 
coordinate direction 



multiple inhomogeneous directions/complex geometry  
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Generalizations of nonmodal stability analysis 

global mode analysis 

q =





q1

q2
...

qN





L ∈ CN×N L ∈ CN2×N2

q =





q1,1

q1,2
...

qN,N





∼ N3 ∼ N6

state vector 

stability matrix 

operation count 
one inhomogeneous 
direction 

two inhomogeneous 
directions 



multiple inhomogeneous directions/complex geometry  
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Generalizations of nonmodal stability analysis 

global mode analysis 

direct eigenvalue algorithms quickly become prohibitively expensive 

iterative eigenvalue algorithms (Arnoldi technique) have to be used 
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Generalizations of nonmodal stability analysis 

global mode analysis 

≈L V

H

Arnoldi algorithm 

represent the (large) stability matrix by a low-rank approximation based on an 
orthogonal basis  

V H

orthogonal basis 

Hessenberg 
matrix 

stability matrix 
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Generalizations of nonmodal stability analysis 

global mode analysis 

qk = L qk−1

j = 1 : k − 1
Hj,k−1 = 〈qj , qk〉
qk = qk −Hj,k−1 qj

Hk,k−1 = ‖qk‖
qk = qk/Hk,k−1

for

end

only multiplications by L are necessary 

eig{L} ≈ eig{H}
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Generalizations of nonmodal stability analysis 

global mode analysis 

≈L V

V H

stability matrix 

computing global modes by diagonalizing  H = DΛD−1

D D−1Λ

global modes 
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Generalizations of nonmodal stability analysis 

global mode analysis 

Examples of global modes: open cavity flow (two-dimensional) 
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Generalizations of nonmodal stability analysis 

global mode analysis 

Examples of global modes: open cavity flow (two-dimensional) 

global spectrum 
global mode 
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Generalizations of nonmodal stability analysis 

global mode analysis 

Examples of global modes: open cavity flow (two-dimensional) 

global spectrum 
global mode 
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Generalizations of nonmodal stability analysis 

global mode analysis 

Examples of global modes: open cavity flow (two-dimensional) 

global spectrum 
global mode 
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Generalizations of nonmodal stability analysis 

global mode analysis 

Examples of global modes: open cavity flow (two-dimensional) 

global spectrum 
global mode 
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Generalizations of nonmodal stability analysis 

global mode analysis 

Examples of global modes: jet in cross flow (three-dimensional) 

global mode snapshot 

jet 

cross flow 

Arnoldi 
algorithm 


