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The classical geometric and statistical perspectives on dynamical systems are being
complemented by a third operator-theoretic perspective, based on the evolution of mea-
surements of the system. This so-called Koopman operator theory is poised to capitalize
on the increasing availability of measurement data from complex systems. Moreover,
Koopman theory provides a path to identify intrinsic coordinate systems where non-
linear dynamics appear linear. Obtaining linear representations of strongly nonlinear
systems has the potential to revolutionize our ability to predict and control these sys-
tems. Sections of these notes are taken from the textbook Data-Driven Science and Engi-
neering: Machine Learning, Dynamical Systems, and Control [12] by Brunton and Kutz.

1 Background on dynamical systems

Before summarizing recent developments in data-driven dynamical systems and Koop-
man theory, it is important to first provide a mathematical introduction to the notation
and summarize key motivations and open challenges in dynamical systems.

1.1 Dynamical systems

Throughout these notes, we will consider dynamical systems of the form:

d

dt
x(t) = f(x(t), t;β), (1)

where x is the state of the system and f is a vector field that possibly depends on the
state x, time t, and a set of parameters β.

We will often consider the simpler case of an autonomous system without time
dependence or parameters:

d

dt
x(t) = f(x(t)). (2)

Discrete-time systems

We will also consider the discrete-time dynamical system

xk+1 = F(xk). (3)
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1.1 Dynamical systems 2

Also known as a map, the discrete-time dynamics are more general than the continuous-
time formulation in (2), encompassing discontinuous and hybrid systems as well.

Discrete-time dynamics may be induced from continuous-time dynamics, where
xk is obtained by sampling the trajectory in (2) discretely in time, so that xk = x(k∆t).
The discrete-time propagator F∆t is now parameterized by the time step ∆t. For an
arbitrary time t, the flow map Ft is defined as

Ft(x(t0)) = x(t0) +

∫ t0+t

t0

f(x(τ)) dτ. (4)

The discrete-time perspective is often more natural when considering experimental
data and digital control.

Linear dynamics and spectral decomposition

Whenever possible, it is desirable to work with linear dynamics of the form

d

dt
x = Ax. (5)

Linear dynamical systems admit closed-form solutions, and there are a wealth of tech-
niques for the analysis, prediction, numerical simulation, estimation, and control of
such systems. The solution of (5) is given by

x(t0 + t) = eAtx(t0). (6)

The dynamics are entirely characterized by the eigenvalues and eigenvectors of the
matrix A, given by the spectral decomposition (eigen-decomposition) of A:

AT = TΛ. (7)

When A has n distinct eigenvalues, then Λ is a diagonal matrix containing the eigen-
values λj and T is a matrix whose columns are the linearly independent eigenvectors
ξj associated with eigenvalues λj . In this case, it is possible to write A = TΛT−1, and
the solution in (6) becomes

x(t0 + t) = TeΛtT−1x(t0). (8)

More generally, in the case of repeated eigenvalues, the matrix Λ will consist of Jor-
dan blocks [57]. Note that the continuous-time system gives rise to a discrete-time
dynamical system, with Ft given by the solution map exp(At) in (6). In this case, the
discrete-time eigenvalues are given by eλt.

The matrix T−1 defines a transformation, z = T−1x, into intrinsic eigenvector co-
ordinates, z, where the dynamics become decoupled:

d

dt
z = Λz. (9)

In other words, each coordinate, zj , only depends on itself, with simple dynamics

d

dt
zj = λjzj . (10)
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Thus, it is highly desirable to work with linear systems, since it is possible to transform
the system into eigenvector coordinates where the dynamics become decoupled. No
such closed-form solution or simple linear change of coordinates exist in general for
nonlinear systems, motivating many of the directions described in these notes.

1.2 Goals and challenges in modern dynamical systems

As we generally use dynamical systems to model real-world phenomena, there are a
number of high-priority goals associated with the analysis of dynamical systems:

1. Future state prediction. In many cases, such as meteorology and climatology, we
seek predictions of the future state of a system. Long-time predictions may still
be challenging.

2. Design and optimization. We may seek to tune the parameters of a system for
improved performance or stability, for example through the placement of fins on
a rocket.

3. Estimation and control. It is often possible to actively control a dynamical sys-
tem through feedback, using measurements of the system to inform actuation to
modify the behavior. In this case, it is often necessary to estimate the full state of
the system from limited measurements.

4. Interpretability and physical understanding. Perhaps a more fundamental goal
of dynamical systems is to provide physical insight and interpretability into a
system’s behavior through analyzing trajectories and solutions to the governing
equations of motion.

Real-world systems are generally nonlinear and exhibit multi-scale behavior in
both space and time. It must also be assumed that there is uncertainty in the equa-
tions of motion, in the specification of parameters, and in the measurements of the sys-
tem. Some systems are more sensitive to this uncertainty than others, and probabilistic
approaches must be used. Increasingly, it is also the case that the basic equations of
motion are not specified and they might be intractable to derive from first principles.

These notes will cover recent data-driven techniques to identify and analyze dy-
namical systems. The majority of these notes addresses two primary challenges of
modern dynamical systems:

1. Nonlinearity. Nonlinearity remains a primary challenge in analyzing and con-
trolling dynamical systems, giving rise to complex global dynamics. We saw
above that linear systems may be completely characterized in terms of the spec-
tral decomposition (i.e., eigenvalues and eigenvectors) of the matrix A, leading to
general procedures for prediction, estimation, and control. No such overarching
framework exists for nonlinear systems, and developing this general framework
is a mathematical grand challenge of the 21st century.

The leading perspective on nonlinear dynamical systems considers the geom-
etry of subspaces of local linearizations around fixed points and periodic or-
bits, global heteroclinic and homoclinic orbits connecting these structures, and
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more general attractors [25]. This geometric theory, originating with Poincaré,
has transformed how we model complex systems, and its success can be largely
attributed to theoretical results, such as the Hartman-Grobman theorem, which
establish when and where it is possible to approximate a nonlinear system with
linear dynamics. Thus, it is often possible to apply the wealth of linear anal-
ysis techniques in a small neighborhood of a fixed point or periodic orbit. Al-
though the geometric perspective provides quantitative locally linear models,
global analysis has remained largely qualitative and computational, limiting the
theory of nonlinear prediction, estimation, and control away from fixed points
and periodic orbits.

2. Unknown dynamics. Perhaps an even more central challenge arises from the
lack of known governing equations for many modern systems of interest. In-
creasingly, researchers are tackling more complex and realistic systems, such as
are found in neuroscience, epidemiology, and ecology. In these fields, there is
a basic lack of known physical laws that provide first principles from which it is
possible to derive equations of motion. Even in systems where we do know the
governing equations, such as turbulence, protein folding, and combustion, we
struggle to find patterns in these high-dimensional systems to uncover intrin-
sic coordinates and coarse-grained variables along which the dominant behavior
evolves.

Traditionally, physical systems were analyzed by making ideal approximations
and then deriving simple differential equation models via Newton’s second law.
Dramatic simplifications could often be made by exploiting symmetries and clever
coordinate systems, as highlighted by the success of Lagrangian and Hamilto-
nian dynamics [1, 43]. With increasingly complex systems, the paradigm is shift-
ing from this classical approach to data-driven methods to discover governing
equations.

All models are approximations, and with increasing complexity, these approxi-
mations often become suspect. Determining what is the correct model is becom-
ing more subjective, and there is a growing need for automated model discovery
techniques that illuminate underlying physical mechanisms. There are also of-
ten latent variables that are relevant to the dynamics but may go unmeasured.
Uncovering these hidden effects is a major challenge for data-driven methods.

Identifying unknown dynamics from data and learning intrinsic coordinates that
enable the linear representation of nonlinear systems are two of the most pressing goals
of modern dynamical systems. Overcoming the challenges of unknown dynamics and
nonlinearity has the promise of transforming our understanding of complex systems,
with tremendous potential benefit to nearly all fields of science and engineering.

To address the issue of nonlinearity, operator-theoretic approaches to dynamical
systems are becoming increasingly used. As we will show, it is possible to repre-
sent nonlinear dynamical systems in terms of infinite-dimensional but linear opera-
tors, such as the Koopman operator from Sec. 2 that advances measurement functions,
and the Perron-Frobenius operator that advances probability densities and ensembles
through the dynamics.
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2 Koopman operator theory

Koopman operator theory has recently emerged as an alternative perspective for dy-
namical systems in terms of the evolution of measurements g(x). In 1931, Bernard O.
Koopman demonstrated that it is possible to represent a nonlinear dynamical system in
terms of an infinite-dimensional linear operator acting on a Hilbert space of measure-
ment functions of the state of the system. This so-called Koopman operator is linear, and
its spectral decomposition completely characterizes the behavior of a nonlinear system,
analogous to (5). However, it is also infinite-dimensional, as there are infinitely many
degrees of freedom required to describe the space of all possible measurement func-
tions g of the state. This poses new challenges. Obtaining finite-dimensional, matrix
approximations of the Koopman operator is the focus of intense research efforts and
holds the promise of enabling globally linear representations of nonlinear dynamical
systems. Expressing nonlinear dynamics in a linear framework is appealing because
of the wealth of optimal estimation and control techniques available for linear sys-
tems and the ability to analytically predict the future state of the system. Obtaining
a finite-dimensional approximation of the Koopman operator has been challenging in
practice, as it involves identifying a subspace spanned by a subset of eigenfunctions of
the Koopman operator.

2.1 Mathematical formulation of Koopman theory

The Koopman operator advances measurement functions of the state with the flow of
the dynamics. We consider real-valued measurement functions g : M → R, which
are elements of an infinite-dimensional Hilbert space. The functions g are also com-
monly known as observables, although this may be confused with the unrelated ob-
servability from control theory. Typically, the Hilbert space is given by the Lebesgue
square-integrable functions on M; other choices of a measure space are also valid.

The Koopman operator Kt is an infinite-dimensional linear operator that acts on
measurement functions g as:

Ktg = g ◦ Ft (11)

where ◦ is the composition operator. For a discrete-time system with timestep ∆t, this
becomes:

K∆tg(xk) = g(F∆t(xk)) = g(xk+1). (12)

In other words, the Koopman operator defines an infinite-dimensional linear dynami-
cal system that advances the observation of the state gk = g(xk) to the next time step:

g(xk+1) = K∆tg(xk). (13)

Note that this is true for any observable function g and for any state xk.
The Koopman operator is linear, a property which is inherited from the linearity of

the addition operation in function spaces:

Kt (α1g1(x) + α2g2(x)) = α1g1 (Ft(x)) + α2g2 (Ft(x)) (14a)
= α1Ktg1(x) + α2Ktg2(x). (14b)
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For sufficiently smooth dynamical systems, it is also possible to define the continuous-
time analogue of the Koopman dynamical system in (13):

d

dt
g = Kg. (15)

The operator K is the infinitesimal generator of the one-parameter family of transfor-
mations Kt [2]. It is defined by its action on an observable function g:

Kg = lim
t→0

Ktg − g
t

= lim
t→0

g ◦ Ft − g
t

. (16)

The linear dynamical systems in (15) and (13) are analogous to the dynamical systems
in (2) and (3), respectively. It is important to note that the original state x may be the
observable, and the infinite-dimensional operator Kt will advance this function. How-
ever, the simple representation of the observable g = x in a chosen basis for Hilbert
space may become arbitrarily complex once iterated through the dynamics. In other
words, finding a representation for Kx may not be simple or straightforward.

Koopman eigenfunctions and intrinsic coordinates

The Koopman operator is linear, which is appealing, but is infinite dimensional, pos-
ing issues for representation and computation. Instead of capturing the evolution of
all measurement functions in a Hilbert space, applied Koopman analysis attempts to
identify key measurement functions that evolve linearly with the flow of the dynam-
ics. Eigenfunctions of the Koopman operator provide just such a set of special measure-
ments that behave linearly in time. In fact, a primary motivation to adopt the Koopman
framework is the ability to simplify the dynamics through the eigen-decomposition of
the operator.

A discrete-time Koopman eigenfunction ϕ(x) corresponding to eigenvalue λ satis-
fies

ϕ(xk+1) = K∆tϕ(xk) = λϕ(xk). (17)

In continuous-time, a Koopman eigenfunction ϕ(x) satisfies

d

dt
ϕ(x) = Kϕ(x) = λϕ(x). (18)

Obtaining Koopman eigenfunctions from data or from analytic expressions is a central
applied challenge in modern dynamical systems. Discovering these eigenfunctions
enables globally linear representations of strongly nonlinear systems.

Applying the chain rule to the time derivative of the Koopman eigenfunction ϕ(x)
yields

d

dt
ϕ(x) = ∇ϕ(x) · ẋ = ∇ϕ(x) · f(x). (19)

Combined with (18), this results in a partial differential equation (PDE) for the eigen-
function ϕ(x):

∇ϕ(x) · f(x) = λϕ(x). (20)
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With this nonlinear PDE, it is possible to approximate the eigenfunctions, either by
solving for the Laurent series or with data via regression, both of which are explored
below. This formulation assumes that the dynamics are both continuous and differen-
tiable. The discrete-time dynamics in (3) are more general, although in many examples
the continuous-time dynamics have a simpler representation than the discrete-time
map for long times. For example, the simple Lorenz system has a simple continuous-
time representation, yet is generally unrepresentable for even moderately long discrete-
time updates.

The key takeaway from (17) and (18) is that the nonlinear dynamics become com-
pletely linear in eigenfunction coordinates, given by ϕ(x). As a simple example, any
conserved quantity of a dynamical system is a Koopman eigenfunction corresponding
to eigenvalue λ = 0. This establishes a Koopman extension of the famous Noether’s
theorem [52], implying that any symmetry in the governing equations gives rise to a
new Koopman eigenfunction with eigenvalue λ = 0. For example, the Hamiltonian
energy function is a Koopman eigenfunction for a conservative system. In addition,
the constant function ϕ = 1 is always a trivial eigenfunction corresponding to λ = 0
for every dynamical system.

Eigenvalue lattices. Interestingly, a set of Koopman eigenfunctions may be used to
generate more eigenfunctions. In discrete time, we find that the product of two eigen-
functions ϕ1(x) and ϕ2(x) is also an eigenfunction

Kt (ϕ1(x)ϕ2(x)) = ϕ1(Ft(x))ϕ2(Ft(x)) (21a)
= λ1λ2ϕ1(x)ϕ2(x) (21b)

corresponding to a new eigenvalue λ1λ2 given by the product of the two eigenvalues
of ϕ1(x) and ϕ2(x).

In continuous time, the relationship becomes:

K (ϕ1ϕ2) =
d

dt
(ϕ1ϕ2) (22a)

= ϕ̇1ϕ2 + ϕ1ϕ̇2 (22b)
= λ1ϕ1ϕ2 + λ2ϕ1ϕ2 (22c)
= (λ1 + λ2)ϕ1ϕ2. (22d)

Interestingly, this means that the set of Koopman eigenfunctions establishes a com-
mutative monoid under point-wise multiplication; a monoid has the structure of a
group, except that the elements need not have inverses. Thus, depending on the dy-
namical system, there may be a finite set of generator eigenfunction elements that may
be used to construct all other eigenfunctions. The corresponding eigenvalues similarly
form a lattice, based on the product λ1λ2 or sum λ1 + λ2, depending on whether the
dynamics are in discrete time or continuous time. For example, given a linear system
ẋ = λx, then ϕ(x) = x is an eigenfunction with eigenvalue λ. Moreover, ϕα = xα is
also an eigenfunction with eigenvalue αλ for any α.

The continuous time and discrete time lattices are related in a simple way. If
the continuous-time eigenvalues are given by λ, then the corresponding discrete-time
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eigenvalues are given by eλt. Thus, the eigenvalue expressions in (21b) and (22d) are
related as:

eλ1teλ2tϕ1(x)ϕ2(x) = e(λ1+λ2)tϕ1(x)ϕ2(x). (23)

As another simple demonstration of the relationship between continuous-time and
discrete-time eigenvalues, consider the continuous-time definition in (16) applied to an
eigenfunction:

lim
t→0

Ktϕ(x)− ϕ(x)

t
= lim

t→0

eλtϕ(x)− ϕ(x)

t
= λϕ(x). (24)

2.2 Koopman mode decomposition and finite representations

Until now, we have considered scalar measurements of a system, and we uncovered
special eigen-measurements that evolve linearly in time. However, we often take mul-
tiple measurements of a system. In extreme cases, we may measure the entire state of a
high-dimensional spatial system, such as an evolving fluid flow. These measurements
may then be arranged in a vector g:

g(x) =




g1(x)
g2(x)

...
gp(x)


 . (25)

Each of the individual measurements may be expanded in terms of the eigenfunctions
ϕj(x), which provide a basis for Hilbert space:

gi(x) =

∞∑

j=1

vijϕj(x). (26)

Thus, the vector of observables, g, may be similarly expanded:

g(x) =




g1(x)
g2(x)

...
gp(x)


 =

∞∑

j=1

ϕj(x)vj , (27)

where vj is the j-th Koopman mode associated with the eigenfunction ϕj .
For conservative dynamical systems, such as those governed by Hamiltonian dy-

namics, the Koopman operator is unitary. Thus, the Koopman eigenfunctions are or-
thonormal for conservative systems, and it is possible to compute the Koopman modes
vj directly by projection:

vj =




〈ϕj , g1〉
〈ϕj , g2〉

...
〈ϕj , gp〉


 , (28)
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Figure 1: Schematic illustrating the Koopman operator for nonlinear dynamical sys-
tems. The dashed lines from yk → xk indicate that we would like to be able to recover
the original state.

where 〈·, ·〉 is the standard inner product of functions in Hilbert space. These modes
have a physical interpretation in the case of direct spatial measurements of a system,
g(x) = x, in which case the modes are coherent spatial modes that behave linearly with
the same temporal dynamics (i.e., oscillations, possibly with linear growth or decay).

Given the decomposition in (27), it is possible to represent the dynamics of the
measurements g as follows:

g(xk) = Kk∆tg(x0) = Kk∆t
∞∑

j=0

ϕj(x0)vj (29a)

=

∞∑

j=0

Kk∆tϕj(x0)vj (29b)

=

∞∑

j=0

λkjϕj(x0)vj . (29c)

This sequence of triples, {(λj , ϕj ,vj)}∞j=0 is known as the Koopman mode decomposition,
and was introduced by Mezic in 2005 [44]. The Koopman mode decomposition was
later connected to data-driven regression via the dynamic mode decomposition [61].

Invariant eigenspaces and finite-dimensional models

Instead of capturing the evolution of all measurement functions in a Hilbert space, ap-
plied Koopman analysis approximates the evolution on an invariant subspace spanned
by a finite set of measurement functions.

A Koopman-invariant subspace is defined as the span of a set of functions {g1, g2, · · · , gp}
if all functions g in this subspace

g = α1g1 + α2g2 + · · ·+ αpgp (30)
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remain in this subspace after being acted on by the Koopman operator K:

Kg = β1g1 + β2g2 + · · ·+ βpgp. (31)

It is possible to obtain a finite-dimensional matrix representation of the Koopman op-
erator by restricting it to an invariant subspace spanned by a finite number of functions
{gj}pj=0. The matrix representation K acts on a vector space Rp, with the coordinates
given by the values of gj(x). This induces a finite-dimensional linear system, as in (13)
and (15).

Any finite set of eigenfunctions of the Koopman operator will span an invariant
subspace. Discovering these eigenfunction coordinates is, therefore, a central chal-
lenge, as they provide intrinsic coordinates along which the dynamics behave linearly.
In practice, it is more likely that we will identify an approximately invariant subspace,
given by a set of functions {gj}pj=0, where each of the functions gj is well approximated
by a finite sum of eigenfunctions: gj ≈

∑p
k=0 αkϕk.

2.3 Examples of Koopman embeddings

Nonlinear system with single fixed point and a slow manifold

Here, we consider an example system with a single fixed point, given by:

ẋ1 = µx1 (32a)

ẋ2 = λ(x2 − x2
1). (32b)

For λ < µ < 0, the system exhibits a slow attracting manifold given by x2 = x2
1. It

is possible to augment the state x with the nonlinear measurement g = x2
1, to define

a three-dimensional Koopman invariant subspace. In these coordinates, the dynamics
become linear:

d

dt



y1

y2

y3


 =



µ 0 0
0 λ −λ
0 0 2µ





y1

y2

y3


 for



y1

y2

y3


 =



x1

x2

x2
1


 . (33a)

The full three-dimensional Koopman observable vector space is visualized in Fig. 2.
Trajectories that start on the invariant manifold y3 = y2

1 , visualized by the blue sur-
face, are constrained to stay on this manifold. There is a slow subspace, spanned by
the eigenvectors corresponding to the slow eigenvalues µ and 2µ; this subspace is vi-
sualized by the green surface. Finally, there is the original asymptotically attracting
manifold of the original system, y2 = y2

1 , which is visualized as the red surface. The
blue and red parabolic surfaces always intersect in a parabola that is inclined at a 45◦

angle in the y2-y3 direction. The green surface approaches this 45◦ inclination as the
ratio of fast to slow dynamics become increasingly large. In the full three-dimensional
Koopman observable space, the dynamics produce a single stable node, with trajecto-
ries rapidly attracting onto the green subspace and then slowly approaching the fixed
point.
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Figure 2: Visualization of three-dimensional linear Koopman system from (33a) along
with projection of dynamics onto the x1-x2 plane. The attracting slow manifold is
shown in red, the constraint y3 = y2

1 is shown in blue, and the slow unstable subspace
of (33a) is shown in green. Black trajectories of the linear Koopman system in y project
onto trajectories of the full nonlinear system in x in the y1-y2 plane. Here, µ = −0.05
and λ = 1. Reproduced from Brunton et al. [11].

Intrinsic coordinates defined by eigenfunctions of the Koopman operator. The left
eigenvectors of the Koopman operator yield Koopman eigenfunctions (i.e., eigenob-
servables). The Koopman eigenfunctions of (33a) corresponding to eigenvalues µ and
λ are:

ϕµ = x1, and ϕλ = x2 − bx2
1 with b =

λ

λ− 2µ
. (34)

The constant b in ϕλ captures the fact that for a finite ratio λ/µ, the dynamics only
shadow the asymptotically attracting slow manifold x2 = x2

1, but in fact follow neigh-
boring parabolic trajectories. This is illustrated more clearly by the various surfaces in
Fig. 2 for different ratios λ/µ.

In this way, a set of intrinsic coordinates may be determined from the observable
functions defined by the left eigenvectors of the Koopman operator on an invariant
subspace. Explicitly,

ϕα(x) = ξαy(x), where ξαK = αξα. (35)

These eigen-observables define observable subspaces that remain invariant under the

Copyright © 2019 Brunton & Kutz, Cambridge University Press. All Rights Reserved.



2.3 Examples of Koopman embeddings 12

Koopman operator, even after coordinate transformations. As such, they may be re-
garded as intrinsic coordinates [76] on the Koopman-invariant subspace.

Example of intractable representation

Consider the logistic map, given by:

xk+1 = βxk(1− xk). (36)

Let our observable subspace include x and x2:

yk =

[
x
x2

]

k

,

[
xk
x2
k

]
. (37)

Writing out the Koopman operator, the first row equation is simple:

yk+1 =

[
x
x2

]

k+1

=

[
β −β
? ?

] [
x
x2

]

k

, (38)

but the second row is not obvious. To find this expression, expand x2
k+1:

x2
k+1 = (βxk(1− xk))2 = β2

(
x2
k − 2x3

k + x4
k

)
. (39)

Thus, cubic and quartic polynomial terms are required to advance x2. Similarly, these
terms need polynomials up to sixth and eighth order, respectively, and so on, ad infini-
tum:

x x2 x3 x4 x5 x6 x7 x8 x9 x10



x
x2

x3

x4

x5

...



k+1

=




β −β 0 0 0 0 0 0 0 0 · · ·
0 β2 −2β2 r2 0 0 0 0 0 0 · · ·
0 0 β3 −3β3 3β3 β3 0 0 0 0 · · ·
0 0 0 β4 −4β4 6β4 −4β4 β4 0 0 · · ·
0 0 0 0 β5 −5β5 10β5 −10β5 5β5 −β5 · · ·
...

...
...

...
...

...
...

...
...

...
. . .







x
x2

x3

x4

x5

...



k

.

It is interesting to note that the rows of this equation are related to the rows of Pascal’s
triangle, with the n-th row scaled by rn, and with the omission of the first row:

[
x0
]
k+1

=
[
0
] [
x0
]
k
. (40)

The above representation of the Koopman operator in a polynomial basis is some-
what troubling. Not only is there no closure, but the determinant of any finite-rank
truncation is very large for β > 1. This illustrates a pitfall associated with naive rep-
resentation of the infinite dimensional Koopman operator for a simple chaotic system.
Truncating the system, or performing a least squares fit on an augmented observable
vector (i.e., DMD on a nonlinear measurement; see Sec. 3) yields poor results, with the
truncated system only agreeing with the true dynamics for a small handful of itera-
tions, as the complexity of the representation grows quickly:
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1
x
x2

x3

x4

x5

x6

x7

x8

...




0
1
0
0
0
0
0
0
0
...




K
=⇒




0
β
−β
0
0
0
0
0
0
...




K
=⇒




0
β2

−β2 − β3

2β3

−β3

0
0
0
0
...




K
=⇒




0
β3

−β3 − β4 − β5

2β4 + 2β5 + 2β6

−β4 − β5 − 6β6 − β7

6β6 + 4β7

−2β6 − 6β7

4β7

−β7

...




. (41)

2.4 Analytic series expansions for eigenfunctions

Given the dynamics in (1), it is possible to solve the PDE in (20) using standard tech-
niques, such as recursively solving for the terms in a Taylor or Laurent series. A num-
ber of simple examples are explored below.

Linear dynamics.

Consider the simple linear dynamics

d

dt
x = x. (42)

Assuming a Taylor series expansion for ϕ(x):

ϕ(x) = c0 + c1x+ c2x
2 + c3x

3 + · · ·

then the gradient and directional derivatives are given by:

∇ϕ = c1 + 2c2x+ 3c3x
2 + 4c4x

3 + · · ·
∇ϕ · f = c1x+ 2c2x

2 + 3c3x
3 + 4c4x

4 + · · ·

Solving for terms in the Koopman eigenfunction PDE (20), we see that c0 = 0 must
hold. For any positive integer λ in (20), only one of the coefficients may be nonzero.
Specifically, for λ = k ∈ Z+, then ϕ(x) = cxk is an eigenfunction for any constant c. For
instance, if λ = 1, then ϕ(x) = x.

Quadratic nonlinear dynamics

Consider a nonlinear dynamical system

d

dt
= x2. (43)
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2.5 History and recent developments 14

There is no Taylor series that satisfies (20), except the trivial solution ϕ = 0 for λ = 0.
Instead, we assume a Laurent series:

ϕ(x) = · · ·+ c−3x
−3 + c−2x

−2 + c−1x
−1 + c0

+ c1x+ c2x
2 + c3x

3 + · · · .

The gradient and directional derivatives are given by:

∇ϕ = · · · − 3c−3x
−4 − 2c−2x

−3 − c−1x
−2 + c1 + 2c2x

+ 3c3x
2 + 4c4x

3 + · · ·
∇ϕ · f = · · · − 3c−3x

−2 − 2c−2x
−1 − c−1 + c1x

2 + 2c2x
3

+ 3c3x
4 + 4c4x

5 + · · · .

Solving for the coefficients of the Laurent series that satisfy (20), we find that all coeffi-
cients with positive index are zero, i.e. ck = 0 for all k ≥ 1. However, the nonpositive
index coefficients are given by the recursion λck+1 = kck, for negative k ≤ −1. Thus,
the Laurent series is

ϕ(x) = c0

(
1− λx−1 +

λ2

2
x−2 − λ3

3!
x−3 + · · ·

)
= c0e

−λ/x.

This holds for all values of λ ∈ C. There are also other Koopman eigenfunctions that
can be identified from the Laurent series.

Polynomial nonlinear dynamics

For a more general nonlinear dynamical system

d

dt
= axn, (44)

ϕ(x) = e
λ

(1−n)ax
1−n

is an eigenfunction for all λ ∈ C.
As mentioned above, it is also possible to generate new eigenfunctions by taking

powers of these primitive eigenfunctions; the resulting eigenvalues generate a lattice
in the complex plane.

2.5 History and recent developments

The original analysis of Koopman in 1931 was introduced to describe the evolution of
measurements of Hamiltonian systems [30], and this theory was generalized by Koop-
man and von Neumann to systems with continuous eigenvalue spectrum in 1932 [31].
In the case of Hamiltonian flows, the Koopman operator Kt is unitary, and forms a
one-parameter family of unitary transformations in Hilbert space. Unitary operators
should be familiar by now, as the discrete Fourier transform (DFT) and the singular
value decomposition (SVD) both provide unitary coordinate transformations. Uni-
tarity implies that the inner product of any two observable functions remains un-
changed through action of the Koopman operator, which is intuitively related to the
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2.5 History and recent developments 15

phase-space volume preserving property of Hamiltonian systems. In the original pa-
per [30], Koopman drew connections between the Koopman eigenvalue spectrum and
conserved quantities, integrability, and ergodicity. Interestingly, Koopman’s 1931 pa-
per was central in the celebrated proofs of the ergodic theorem by Birkhoff and von
Neumann [7, 50, 8, 49].

Koopman analysis has recently gained renewed interest with the pioneering work
of Mezic and collaborators [47, 44, 14, 16, 15, 45, 36]. The Koopman operator is also
known as the composition operator, which is formally the pull-back operator on the
space of scalar observable functions [2], and it is the dual, or left-adjoint, of the Perron-
Frobenius operator, or transfer operator, which is the push-forward operator on the
space of probability density functions. When a polynomial basis is chosen to represent
the Koopman operator, then it is closely related to Carleman linearization [18, 19, 20],
which has been used extensively in nonlinear control [66, 34, 6, 71]. Koopman analysis
is also connected to the resolvent operator theory from fluid dynamics [65].

Recently, it has been shown that the operator theoretic framework complements
the traditional geometric and probabilistic perspectives. For example, level sets of
Koopman eigenfunctions form invariant partitions of the state-space of a dynamical
system [15]; in particular, eigenfunctions of the Koopman operator may be used to an-
alyze the ergodic partition [48, 14]. Koopman analysis has also been recently shown to
generalize the Hartman-Grobman theorem to the entire basin of attraction of a stable
or unstable equilibrium point or periodic orbit [36].

At the time of this writing, representing Koopman eigenfunctions for general dy-
namical systems remains a central unsolved challenge. Significant research efforts are
focused on developing data-driven techniques to identify Koopman eigenfunctions
and use these for control, which will be discussed in the following sections and chap-
ters. Recently, new work has emerged that attempts to leverage the power of deep
learning to discover and represent eigenfunctions from data [75, 42, 72, 78, 55, 38].
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3 Data-driven Koopman analysis

Obtaining linear representations for strongly nonlinear systems has the potential to
revolutionize our ability to predict and control these systems. The linearization of
dynamics near fixed points or periodic orbits has long been employed for local lin-
ear representation of the dynamics [25]. The Koopman operator is appealing because
it provides a global linear representation, valid far away from fixed points and pe-
riodic orbits. However, previous attempts to obtain finite-dimensional approxima-
tions of the Koopman operator have had limited success. Dynamic mode decompo-
sition [63, 61, 35] seeks to approximate the Koopman operator with a best-fit linear
model advancing spatial measurements from one time to the next, although these lin-
ear measurements are not rich enough for many nonlinear systems. Augmenting DMD
with nonlinear measurements may enrich the model, but there is no guarantee that
the resulting models will be closed under the Koopman operator [11]. Here, we de-
scribe several approaches for identifying Koopman embeddings and eigenfunctions
from data. These methods include the extended dynamic mode decomposition [76],
extensions based on SINDy [28], and the use of delay coordinates [10].

3.1 Dynamic mode decomposition (DMD)

Dynamic mode decomposition was developed by Schmid [64, 63] in the fluid dynam-
ics community to identify spatio-temporal coherent structures from high-dimensional
data. DMD is based on proper orthogonal decomposition (POD), which utilizes the
computationally efficient singular value decomposition (SVD), so that it scales well to
provide effective dimensionality reduction in high-dimensional systems. In contrast
to SVD/POD, which results in a hierarchy of modes based entirely on spatial correla-
tion and energy content, while largely ignoring temporal information, DMD provides
a modal decomposition where each mode consists of spatially correlated structures
that have the same linear behavior in time (e.g., oscillations at a given frequency with
growth or decay). Thus, DMD not only provides dimensionality reduction in terms of
a reduced set of modes, but also provides a model for how these modes evolve in time.

Soon after the development of the original DMD algorithm [64, 63], Rowley, Mezic,
and collaborators established an important connection between DMD and Koopman
theory [61] (see Sec. 2). DMD may be formulated as an algorithm to identify the best-
fit linear dynamical system that advances high-dimensional measurements forward in
time [74]. In this way, DMD approximates the Koopman operator restricted to the set
of direct measurements of the state of a high-dimensional system. This connection be-
tween the computationally straightforward and linear DMD framework and nonlinear
dynamical systems has generated considerable interest in these methods [35].

Within a short amount of time, DMD has become a workhorse algorithm for the
data-driven characterization of high-dimensional systems. DMD is equally valid for
experimental and numerical data, as it is not based on knowledge of the governing
equations, but is instead based purely on measurement data. The DMD algorithm may
also be seen as connecting the favorable aspects of the SVD for spatial dimensionality
reduction and the FFT for temporal frequency identification [21, 35]. Thus, each DMD
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3.2 The DMD algorithm 17

mode is associated with a particular eigenvalue λ = a + ib, with a particular frequency
of oscillation b and growth or decay rate a.

There are many variants of DMD and it is connected to existing techniques from
system identification and modal extraction. DMD has become especially popular in
recent years in large part due to its simple numerical implementation and strong con-
nections to nonlinear dynamical systems via Koopman spectral theory. Finally, DMD is
an extremely flexible platform, both mathematically and numerically, facilitating inno-
vations related to compressed sensing, control theory, and multi-resolution techniques.
These connections and extensions will be discussed at the end of this section.

3.2 The DMD algorithm

Several algorithms have been proposed for DMD, although here we present the exact
DMD framework developed by Tu et al. [74]. Whereas earlier formulations required
uniform sampling of the dynamics in time, the approach presented here works with
irregularly sampled data and with concatenated data from several different experi-
ments or numerical simulations. Moreover, the exact formulation of Tu et al. provides
a precise mathematical definition of DMD that allows for rigorous theoretical results.
Finally, exact DMD is based on the efficient and numerically well-conditioned singular
value decomposition, as is the original formulation by Schmid [63].

DMD is inherently data-driven, and the first step is to collect a number of pairs of
snapshots of the state of a system as it evolves in time. These snapshot pairs may be
denoted by {(x(tk),x(t′k)}mk=1, where t′k = tk + ∆t, and the timestep ∆t is sufficiently
small to resolve the highest frequencies in the dynamics. As before, a snapshot may
be the state of a system, such as a three-dimensional fluid velocity field sampled at
a number of discretized locations, that is reshaped into a high-dimensional column
vector. These snapshots are then arranged into two data matrices, X and X′:

X =


x(t1) x(t2) · · · x(tm)


 (45a)

X′ =


x(t′1) x(t′2) · · · x(t′m)


 . (45b)

The original formulations of Schmid [63] and Rowley et al. [61] assumed uniform sam-
pling in time, so that tk = k∆t and t′k = tk+∆t = tk+1. If we assume uniform sampling
in time, we will adopt the notation xk = x(k∆t).

The DMD algorithm seeks the leading spectral decomposition (i.e., eigenvalues
and eigenvectors) of the best-fit linear operator A that relates the two snapshot matri-
ces in time:

X′ ≈ AX. (46)

The best fit operator A then establishes a linear dynamical system that best advances
snapshot measurements forward in time. If we assume uniform sampling in time, this
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becomes:

xk+1 ≈ Axk. (47)

Mathematically, the best-fit operator A is defined as

A = argmin
A

‖X′ −AX‖F = X′X† (48)

where ‖ · ‖F is the Frobenius norm and † denotes the pseudo-inverse. The optimized
DMD algorithm generalizes the optimization framework of exact DMD to perform a
regression to exponential time dynamics, thus providing an improved computation of
the DMD modes and their eigenvalues [4].

It is worth noting at this point that the matrix A in (47) closely resembles the Koop-
man operator in (13), if we choose direct linear measurements of the state, so that
g(x) = x. This connection was originally established by Rowley, Mezic and collabo-
rators [61], and has sparked considerable interest in both DMD and Koopman theory.
These connections will be explored in more depth below.

For a high-dimensional state vector x ∈ Rn, the matrix A has n2 elements, and
representing this operator, let alone computing its spectral decomposition, may be in-
tractable. Instead, the DMD algorithm leverages dimensionality reduction to compute
the dominant eigenvalues and eigenvectors of A without requiring any explicit com-
putations using A directly. In particular, the pseudo-inverse X† in (48) is computed
via the singular value decomposition of the matrix X. Since this matrix typically has
far fewer columns than rows, i.e. m� n, there are at most m non-zero singular values
and corresponding singular vectors, and hence the matrix A will have at most rank m.
Instead of computing A directly, we compute the projection of A onto these leading
singular vectors, resulting in a small matrix Ã of size at most m × m. A major con-
tribution of Schmid [63] was a procedure to approximate the high-dimensional DMD
modes (eigenvectors of A) from the reduced matrix Ã and the data matrix X with-
out ever resorting to computations on the full A. Tu et al. [74] later proved that these
approximate modes are in fact exact eigenvectors of the full A matrix under certain
conditions. Thus, the exact DMD algorithm of Tu et al. [74] is given by the following
steps:

Step 1. Compute the singular value decomposition of X:

X ≈ ŨΣ̃Ṽ
∗
, (49)

where Ũ ∈ Cn×r, Σ̃ ∈ Cr×r, and Ṽ ∈ Cm×r and r ≤ m denotes either the exact
or approximate rank of the data matrix X. In practice, choosing the approximate
rank r is one of the most important and subjective steps in DMD, and in dimen-
sionality reduction in general. We advocate the principled hard-thresholding al-
gorithm of Gavish and Donoho [24] to determine r from noisy data. The columns
of the matrix Ũ are also known as POD modes, and they satisfy Ũ

∗
Ũ = I. Simi-

larly, columns of Ṽ are orthonormal and satisfy Ṽ
∗
Ṽ = I.
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Step 2. According to (48), the full matrix A may be obtained by computing the
pseudo-inverse of X:

A = X′ṼΣ̃
−1

Ũ
∗
. (50)

However, we are only interested in the leading r eigenvalues and eigenvectors of
A, and we may thus project A onto the POD modes in U:

Ã = Ũ
∗
AŨ = Ũ

∗
X′ṼΣ̃

−1
. (51)

The key observation here is that the reduced matrix Ã has the same nonzero
eigenvalues as the full matrix A. Thus, we need only compute the reduced Ã di-
rectly, without ever working with the high-dimensional A matrix. The reduced-
order matrix Ã defines a linear model for the dynamics of the vector of POD
coefficients x̃:

x̃k+1 = Ãx̃k. (52)

Note that the matrix Ũ provides a map to reconstruct the full state x from the
reduced state x̃: x = Ũx̃.

Step 3. The spectral decomposition of Ã is computed:

ÃW = WΛ. (53)

The entries of the diagonal matrix Λ are the DMD eigenvalues, which also corre-
spond to eigenvalues of the full A matrix. The columns of W are eigenvectors of
Ã, and provide a coordinate transformation that diagonalizes the matrix. These
columns may be thought of as linear combinations of POD mode amplitudes that
behave linearly with a single temporal pattern given by λ.

Step 4. The high-dimensional DMD modes Φ are reconstructed using the eigen-
vectors W of the reduced system and the time-shifted snapshot matrix X′ ac-
cording to:

Φ = X′ṼΣ̃
−1

W. (54)

Remarkably, these DMD modes are eigenvectors of the high-dimensional A ma-
trix corresponding to the eigenvalues in Λ, as shown in Tu et al. [74]:

AΦ = (X′ṼΣ̃
−1

Ũ
∗
)(X′ṼΣ̃

−1

︸ ︷︷ ︸
Ã

W)

= X′ṼΣ̃
−1

ÃW

= X′ṼΣ̃
−1

WΛ

= ΦΛ.
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In the original paper by Schmid [63], DMD modes are computed using Φ = ŨW,
which are known as projected modes; however, these modes are not guaranteed to be
exact eigenvectors of A. Because A is defined as A = X′X†, eigenvectors of A should
be in the column space of X′, as in the exact DMD definition, instead of the column
space of X in the original DMD algorithm. In practice, the column spaces of X and X′

will tend to be nearly identical for dynamical systems with low-rank structure, so that
the projected and exact DMD modes often converge.

To find a DMD mode corresponding to a zero eigenvalue, λ = 0, it is possible to
use the exact formulation if φ = X′ṼΣ̃

−1
w 6= 0. However, if this expression is null,

then the projected mode φ = Ũw should be used.

Historical perspective

In the original formulation, the snapshot matrices X and X′ were formed with a col-
lection of sequential snapshots, evenly spaced in time:

X =


x1 x2 · · · xm


 (55a)

X′ =


x2 x3 · · · xm+1


 . (55b)

Thus, the matrix X can be written in terms of iterations of the matrix A as:

X ≈


x1 Ax1 · · · Am−1x1


 . (56)

Thus, the columns of the matrix X belong to a Krylov subspace generated by the prop-
agator A and the initial condition x1. In addition, the matrix X′ may be related to X
through the shift operator as:

X′ = XS, (57)

where S is defined as

S =




0 0 0 · · · 0 a1

1 0 0 · · · 0 a2

0 1 0 · · · 0 a3
...

...
...

. . .
...

...
0 0 0 · · · 1 am



. (58)

Thus, the first m − 1 columns of X′ are obtained directly by shifting the correspond-
ing columns of X, and the last column is obtained as a best-fit combination of the m
columns of X that minimizes the residual. In this way, the DMD algorithm resem-
bles an Arnoldi algorithm used to find the dominant eigenvalues and eigenvectors
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of a matrix A through iteration. The matrix S will share eigenvalues with the high-
dimensional A matrix, so that decomposition of S may be used to obtain dynamic
modes and eigenvalues. However, computations based on S is not as numerically sta-
ble as the exact algorithm above.

Spectral decomposition and DMD expansion

One of the most important aspects of the DMD is the ability to expand the system state
in terms of a data-driven spectral decomposition:

xk =
r∑

j=1

φjλ
k−1
j bj = ΦΛk−1b, (59)

where φj are DMD modes (eigenvectors of the A matrix), λj are DMD eigenvalues
(eigenvalues of the A matrix), and bj is the mode amplitude. The vector b of mode
amplitudes is generally computed as

b = Φ†x1. (60)

More principled approaches to select dominant and sparse modes have been consid-
ered [21, 26]. However, computing the mode amplitudes is generally quite expensive,
even using the straightforward definition in (60). Instead, it is possible to compute
these amplitudes using POD projected data:

x1 = Φb (61a)

=⇒ Ũx̃1 = X′ṼΣ̃
−1

Wb (61b)

=⇒ x̃1 = Ũ
∗
X′ṼΣ̃

−1
Wb (61c)

=⇒ x̃1 = ÃWb (61d)
=⇒ x̃1 = WΛb (61e)

=⇒ b = (WΛ)−1 x̃1. (61f)

The matrices W and Λ are both size r×r, as opposed to the large Φ matrix that is n×r.
The spectral expansion above may also be written in continuous time by introduc-

ing the continuous eigenvalues ω = log(λ)/∆t:

x(t) =
r∑

j=1

φje
ωjtbj = Φ exp(Ωt)b, (62)

where Ω is a diagonal matrix containing the continuous-time eigenvalues ωj .

3.3 Extended DMD

The extended DMD algorithm [76] is essentially the same as standard DMD [74], except
that instead of performing regression on direct measurements of the state, regression
is performed on an augmented vector containing nonlinear measurements of the state.
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As discussed earlier, eDMD is equivalent to the variational approach of conformation
dynamics [51, 53, 54], which was developed in 2013 by Noé and Nüske.

Here, we will modify the notation slightly to conform to related methods. In
eDMD, an augmented state is constructed:

y = ΘT (x) =




θ1(x)
θ2(x)

...
θp(x)


 . (63)

Θ may contain the original state x as well as nonlinear measurements, so often p� n.
Next, two data matrices are constructed, as in DMD:

Y =


y1 y2 · · · ym


 , Y′ =


y2 y3 · · · ym+1


 . (64a)

Finally, a best-fit linear operator AY is constructed that maps Y into Y′:

AY = argmin
AY

‖Y′ −AYY‖ = Y′Y†. (65)

This regression may be written in terms of the data matrices Θ(X) and Θ(X′):

AY = argmin
AY

‖ΘT (X′)−AYΘT (X)‖ = ΘT (X′)
(
ΘT (X)

)†
. (66)

Because the augmented vector y may be significantly larger than the state x, kernel
methods are often employed to compute this regression [77]. In principle, the enriched
library Θ provides a larger basis in which to approximate the Koopman operator. It
has been shown recently that in the limit of infinite snapshots, the extended DMD op-
erator converges to the Koopman operator projected onto the subspace spanned by
Θ [33]. However, if Θ does not span a Koopman invariant subspace, then the pro-
jected operator may not have any resemblance to the original Koopman operator, as
all of the eigenvalues and eigenvectors may be different. In fact, it was shown that
the extended DMD operator will have spurious eigenvalues and eigenvectors unless
it is represented in terms of a Koopman invariant subspace [11]. Therefore, it is essen-
tial to use validation and cross-validation techniques to ensure that eDMD models are
not overfit, as discussed below. For example, it was shown that eDMD cannot contain
the original state x as a measurement and represent a system that has multiple fixed
points, periodic orbits, or other attractors, because these systems cannot be topologi-
cally conjugate to a finite-dimensional linear system [11].
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3.4 Approximating Koopman eigenfunctions from data

In discrete-time, a Koopman eigenfunctionϕ(x) evaluated at a number of data points
in X will satisfy: 



λϕ(x1)
λϕ(x2)

...
λϕ(xm)


 =




ϕ(x2)
ϕ(x3)

...
ϕ(xm+1)


 . (67)

It is possible to approximate this eigenfunction as an expansion in terms of a set of
candidate functions,

Θ(x) =
[
θ1(x) θ2(x) · · · θp(x)

]
. (68)

The Koopman eigenfunctionmay be approximated in this basis as:

ϕ(x) ≈
p∑

k=1

θk(x)ξk = Θ(x)ξ. (69)

Writing (67) in terms of this expansion yields the matrix system:
(
λΘ(X)−Θ(X′)

)
ξ = 0. (70)

If we seek the best least-squares fit to (70), this reduces to the extended DMD [77, 76]
formulation:

λξ = Θ(X)†Θ(X′)ξ. (71)

Note that (71) is the transpose of (66), so that left eigenvectors become right eigen-
vectors. Thus, eigenvectors ξ of Θ†Θ′ yield the coefficients of the eigenfunction ϕ(x)
represented in the basis Θ(x). It is absolutely essential to then confirm that predicted
eigenfunctions actually behave linearly on trajectories, by comparing them with the
predicted dynamics ϕk+1 = λϕk, because the regression above will result in spurious
eigenvalues and eigenvectors unless the basis elements θj span a Koopman invariant
subspace [11].

Sparse identification of eigenfunctions

It is possible to leverage the SINDy regression [13] to identify Koopman eigenfunc-
tions corresponding to a particular eigenvalue λ, selecting only the few active terms in
the library Θ(x) to avoid overfitting. Given the data matrices, X and Ẋ from above
it is possible to construct the library of basis functions Θ(X) as well as a library of
directional derivatives, representing the possible terms in∇ϕ(x) · f(x) from (20):

Γ(x, ẋ) =
[
∇θ1(x) · ẋ ∇θ2(x) · ẋ · · · ∇θp(x) · ẋ

]
. (72)

It is then possible to construct Γ from data:

Γ(X, Ẋ) =




∇θ1(x1) · ẋ1 ∇θ2(x1) · ẋ1 · · · ∇θp(x1) · ẋ1

∇θ1(x2) · ẋ2 ∇θ2(x2) · ẋ2 · · · ∇θp(x2) · ẋ2

...
...

. . .
...

∇θ1(xm) · ẋm ∇θ2(xm) · ẋm · · · ∇θp(xm) · ẋm


 .
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For a given eigenvalue λ, the Koopman PDE in (20) may be evaluated on data:
(
λΘ(X)− Γ(X, Ẋ)

)
ξ = 0. (73)

The formulation in (73) is implicit, so that ξwill be in the null-space of λΘ(X)− Γ(X, Ẋ).
The right null-space of (73) for a given λ is spanned by the right singular vectors of
λΘ(X) − Γ(X, Ẋ) = UΣV∗ (i.e., columns of V) corresponding to zero-valued sin-
gular values. It may be possible to identify the few active terms in an eigenfunction
by finding the sparsest vector in the null-space [60], as in the implicit-SINDy algo-
rithm [41] described in Sec. ??. In this formulation, the eigenvalues λ are not known a
priori, and must be learned with the approximate eigenfunction. Koopman eigenfun-
tions and eigenvalues can also be determined as the solution to the eigenvalue prob-
lem AYξα = λαξα, where AY = Θ†Γ is obtained via least-squares regression, as in
the continuous-time version of eDMD. While many eigenfunctions are spurious, those
corresponding to lightly damped eigenvalues can be well approximated.

From a practical standpoint, data in X does not need to be sampled from full trajec-
tories, but can be obtained using more sophisticated strategies such as latin hypercube
sampling or sampling from a distribution over the phase space. Moreover, reproduc-
ing kernel Hilbert spaces (RKHS) can be employed to describe ϕ(x) locally in patches
of state space.

Example: Duffing system (Kaiser et al [28]). We demonstrate the sparse identifica-
tion of Koopman eigenfunctions on the undamped Duffing oscillator:

d

dt

[
x1

x2

]
=

[
x2

x1 − x3
1

]

where x1 is the position and x2 is the velocity of a particle in a double well potential
with equilibria (0, 0) and (±1, 0). This system is conservative, with Hamiltonian H =
1
2x

2
2− 1

2x
2
1+ 1

4x
4
1. The Hamiltonian, and in general any conserved quantity, is a Koopman

eigenfunction with zero eigenvalue.
For the eigenvalue λ = 0, (73) becomes −Γ(X, Ẋ)ξ = 0, and hence a sparse ξ is

sought in the null-space of −Γ(X, Ẋ). A library of candidate functions is constructed
from data, employing polynomials up to fourth order:

Θ(X) =



| | | | |

x1(t) x2(t) x21(t) x1(t)x2(t) · · · x42(t)
| | | | |




and

Γ(X, Ẋ) =



| | | | |

ẋ1(t) ẋ2(t) 2x1(t)ẋ1(t) x2(t)ẋ1(t) + x1(t) + ẋ2(t) · · · 4x2(t)3ẋ2(t)
| | | | |


 .

A sparse vector of coefficients ξ may be identified, with the few non-zero entries
determining the active terms in the Koopman eigenfunction. The identified Koopman
eigenfunctionassociated with λ = 0 is

ϕ(x) = −2/3x2
1 + 2/3x2

2 + 1/3x4
1. (74)

This eigenfunction matches the Hamiltonian perfectly up to a constant scaling.
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3.5 Data-driven Koopman and delay coordinates

Instead of advancing instantaneous linear or nonlinear measurements of the state of a
system directly, as in DMD, it may be possible to obtain intrinsic measurement coordi-
nates for Koopman based on time-delayed measurements of the system [69, 10, 3, 22].
This perspective is data-driven, relying on the wealth of information from previous
measurements to inform the future. Unlike a linear or weakly nonlinear system, where
trajectories may get trapped at fixed points or on periodic orbits, chaotic dynamics are
particularly well-suited to this analysis: trajectories evolve to densely fill an attractor,
so more data provides more information. The use of delay coordinates may be es-
pecially important for systems with long-term memory effects, where the Koopman
approach has recently been shown to provide a successful analysis tool [70]. Interest-
ingly, a connection between the Koopman operator and the Takens embedding was
explored as early as 2004 [47], where a stochastic Koopman operator is defined and a
statistical Takens theorem is proven.

The time-delay measurement scheme is shown schematically in Fig. 3, as illustrated
on the Lorenz system for a single time-series measurement of the first variable, x(t).
The conditions of the Takens embedding theorem are satisfied [73], so it is possible to
obtain a diffeomorphism between a delay embedded attractor and the attractor in the
original coordinates. We then obtain eigen-time-delay coordinates from a time-series
of a single measurement x(t) by taking the SVD of the Hankel matrix H:

H =




x(t1) x(t2) · · · x(tmc)
x(t2) x(t3) · · · x(tmc+1)

...
...

. . .
...

x(tmo) x(tmo+1) · · · x(tm)


 = UΣV∗. (75)

The columns of U and V from the SVD are arranged hierarchically by their ability
to model the columns and rows of H, respectively. Often, H may admit a low-rank
approximation by the first r columns of U and V. Note that the Hankel matrix in (75)
is the basis of the eigensystem realization algorithm [27] in linear system identification
and singular spectrum analysis (SSA) [9] in climate time-series analysis.

The low-rank approximation to (75) provides a data-driven measurement system
that is approximately invariant to the Koopman operator for states on the attractor. By
definition, the dynamics map the attractor into itself, making it invariant to the flow. In
other words, the columns of U form a Koopman invariant subspace. We may re-write
(75) with the Koopman operator K , K∆t:

H =




x(t1) Kx(t1) · · · Kmc−1x(t1)
Kx(t1) K2x(t1) · · · Kmcx(t1)

...
...

. . .
...

Kmo−1x(t1) Kmox(t1) · · · Km−1x(t1)


 . (76)

The columns of (75) are well-approximated by the first r columns of U. The first r
columns of V provide a time series of the magnitude of each of the columns of UΣ in
the data. By plotting the first three columns of V, we obtain an embedded attractor for
the Lorenz system (See Fig. 3).
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Figure 3: Decomposition of chaos into a linear system with forcing. A time series x(t)
is stacked into a Hankel matrix H. The SVD of H yields a hierarchy of eigen time
series that produce a delay-embedded attractor. A best-fit linear regression model is
obtained on the delay coordinates v; the linear fit for the first r−1 variables is excellent,
but the last coordinate vr is not well-modeled as linear. Instead, vr is an input that
forces the first r − 1 variables. Rare forcing events correspond to lobe switching in the
chaotic dynamics. This architecture is called the Hankel alternative view of Koopman
(HAVOK) analysis, from [10]. Figure modified from Brunton et al. [10].

The connection between eigen-time-delay coordinates from (75) and the Koopman
operator motivates a linear regression model on the variables in V. Even with an
approximately Koopman-invariant measurement system, there remain challenges to
identifying a linear model for a chaotic system. A linear model, however detailed,
cannot capture multiple fixed points or the unpredictable behavior characteristic of
chaos with a positive Lyapunov exponent [11]. Instead of constructing a closed linear
model for the first r variables in V, we build a linear model on the first r − 1 variables
and recast the last variable, vr, as a forcing term:

d

dt
v(t) = Av(t) + Bvr(t), (77)

where v =
[
v1 v2 · · · vr−1

]T is a vector of the first r − 1 eigen-time-delay coordi-
nates. Other work has investigated the splitting of dynamics into deterministic linear,
and chaotic stochastic dynamics [44].

In all of the examples explored in [10], the linear model on the first r − 1 terms
is accurate, while no linear model represents vr. Instead, vr is an input forcing to the
linear dynamics in (77), which approximates the nonlinear dynamics. The statistics
of vr(t) are non-Gaussian, with long tails correspond to rare-event forcing that drives
lobe switching in the Lorenz system; this is related to rare-event forcing distributions
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observed and modeled by others [39, 62, 40]. The forced linear system in (77) was
discovered after applying the SINDy algorithm [13] to delay coordinates of the Lorenz
system. Continuing to develop Koopman on delay coordinates has significant promise
in the context of closed-loop feedback control, where it may be possible to manipulate
the behavior of a chaotic system by treating vr as a disturbance.

In addition, the use of delay coordinates as intrinsic measurements for Koopman
analysis suggests that Koopman theory may also be used to improve spatially dis-
tributed sensor technologies. A spatial array of sensors, for example the O(100) strain
sensors on the wings of flying insects, may use phase delay coordinates to provide
nearly optimal embeddings to detect and control convective structures (e.g., stall from
a gust, leading edge vortex formation and convection, etc.).

3.6 Neural networks for Koopman embeddings

Despite the promise of Koopman embeddings, obtaining tractable representations has
remained a central challenge. Recall that even for relatively simple dynamical systems,
the eigenfunctions of the Koopman operator may be arbitrarily complex. Deep learn-
ing, which is well-suited for representing arbitrary functions, has recently emerged as
a promising approach for discovering and representing Koopman eigenfunctions [75,
42, 72, 78, 55, 37, 38], providing a data-driven embedding of strongly nonlinear sys-
tems into intrinsic linear coordinates. In particular, the Koopman perspective fits natu-
rally with the deep auto-encoder structure, where a few key latent variables y = ϕ(x)
are discovered to parameterize the dynamics. In a Koopman network, an additional
constraint is enforced so that the dynamics must be linear on these latent variables,
forcing the functions ϕ(x) to be Koopman eigenfunctions, as illustrated in Fig. 4. The
constraint of linear dynamics is enforced by the loss function ‖ϕ(xk+1) − Kϕ(xk)‖,
where K is a matrix. In general, linearity is enforced over multiple time steps, so that a
trajectory is captured by iterating K on the latent variables. In addition, it is important
to be able to map back to physical variables x, which is why the autoencoder struc-
ture is favorable [38]. Variational autoencoders are also used for stochastic dynamical
systems, such as molecular dynamics, where the map back to physical configuration
space from the latent variables is probabilistic [75, 42].

For simple systems with a discrete eigenvalue spectrum, a compact representation
may be obtained in terms of a few autoencoder variables. However, dynamical systems
with continuous eigenvalue spectra defy low-dimensional representations using many
existing neural network or Koopman representations. Continuous spectrum dynamics
are ubiquitous, ranging from the simple pendulum to nonlinear optics and broadband
turbulence. For example, the classical pendulum, given by

ẍ = − sin(ωx) (78)

exhibits a continuous range of frequencies, from ω to 0, as the amplitude of the pen-
dulum oscillation is increased. Thus, the continuous spectrum confounds a simple
description in terms of a few Koopman eigenfunctions [46]. Indeed, away from the
linear regime, an infinite Fourier sum is required to approximate the shift in frequency.

In a recent work by Lusch et al. [38], an auxiliary network is used to parameterize
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Figure 4: Deep neural network architecture used to identify Koopman eigenfunctions
ϕ(x). The network is based on a deep auto-encoder (a), which identifies intrinsic coor-
dinates y = ϕ(x). Additional loss functions are included to enforce linear dynamics in
the auto-encoder variables (b,c). Reproduced with permission from Lusch et al. [38].
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Figure 5: Modified network architecture with auxiliary network to parameterize the
continuous eigenvalue spectrum. A continuous eigenvalue λ enables aggressive di-
mensionality reduction in the auto-encoder, avoiding the need for higher harmonics
of the fundamental frequency that are generated by the nonlinearity. Reproduced with
permission from Lusch et al. [38].

the continuously varying eigenvalue, enabling a network structure that is both parsi-
monious and interpretable. This parameterized network is depicted schematically in
Fig. 5 and illustrated on the simple pendulum in Fig. 6. In contrast to other network
structures, which require a large autoencoder layer to encode the continuous frequency
shift with an asymptotic expansion in terms of harmonics of the natural frequency, the
parameterized network is able to identify a single complex conjugate pair of eigenfunc-
tions with a varying imaginary eigenvalue pair. If this explicit frequency dependence
is unaccounted for, then a high-dimensional network is necessary to account for the
shifting frequency and eigenvalues.
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Figure 6: Neural network embedding of the nonlinear pendulum, using the parame-
terized network in Fig. 5. As the pendulum amplitude increases, the frequency con-
tinuously changes (I). In the Koopman eigenfunction coordinates (III), the dynamics
become linear, given by perfect circles (IIIC). Reproduced with permission from Lusch et
al. [38].

It is expected that neural network representations of dynamical systems, and Koop-
man embeddings in particular, will remain a growing area of interest in data-driven
dynamics. Combining the representational power of deep learning with the elegance
and simplicity of Koopman embeddings has the potential to transform the analysis
and control of complex systems.
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4 Koopman control

4.1 Nonlinear system identification for control

The data-driven modeling and control of complex systems is undergoing a revolution,
driven by the rise of big data, advanced algorithms in machine learning and optimiza-
tion, and modern computational hardware. Despite the increasing use of equation-free
and adaptive control methods, there remains a wealth of powerful model-based con-
trol techniques, such as linear optimal control and model predictive control (MPC) [23,
17]. Increasingly, these model-based control strategies are aided by data-driven tech-
niques that characterize the input–output dynamics of a system of interest from mea-
surements alone, without relying on first principles modeling. Broadly speaking, this
is known as system identification, which has a long and rich history in control theory
going back decades to the time of Kalman. However, with increasingly powerful data-
driven techniques, nonlinear system identification is the focus of renewed interest.

The goal of system identification is to identify a low-order model of the input–
output dynamics from actuation u to measurements y. If we are able to measure the
full state x of the system, then this reduces to identifying the dynamics f that satisfy:

d

dt
x = f(x,u). (79)

This problem may be formulated in discrete-time, since data is typically collected at
discrete instances in time and control laws are often implemented digitally. In this
case, the dynamics read:

xk+1 = F(xk,uk). (80)

When the dynamics are approximately linear, we may identify a linear system

xk+1 = Axk + Buk, (81)

which is the approach taken in the DMD with control (DMDc) algorithm below.
It may also be advantageous to identify a set of measurements y = g(x), in which

the unforced nonlinear dynamics appear linear:

yk+1 = AYyk. (82)

This is the approach taken in the Koopman control method below. In this way, nonlin-
ear dynamics may be estimated and controlled using standard textbook linear control
theory in the intrinsic coordinates y [32, 28].

Finally, the nonlinear dynamics in (79) or (80) may be identified directly using the
SINDY with control algorithm. The resulting models may be used with model predic-
tive control for the control of fully nonlinear systems [29].

4.2 DMD with control

Proctor et al. [58] extended the DMD algorithm to include the effect of actuation and
control, in the so-called DMD with control (DMDc) algorithm. It was observed that
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naively applying DMD to data from a system with actuation would often result in in-
correct dynamics, as the effects of internal dynamics are confused with the effects of
actuation. DMDc was originally motivated by the problem of characterizing and con-
trolling the spread of disease, where it is unreasonable to stop intervention efforts (e.g.,
vaccinations) just to obtain a characterization of the unforced dynamics [59]. Instead, if
the actuation signal is measured, a new DMD regression may be formulated in order to
disambiguate the effect of internal dynamics from that of actuation and control. Sub-
sequently, this approach has been extended to perform DMDc on heavily subsampled
or compressed measurements by Bai et al. [5].

The DMDc method seeks to identify the best-fit linear operators A and B that ap-
proximately satisfy the following dynamics on measurement data:

xk+1 ≈ Axk + Buk. (83)

In addition to the snapshot matrix X =
[
x1 x2 · · · xm

]
and the time-shifted

snapshot matrix X′ =
[
x2 x3 · · · xm+1

]
from (55), a matrix of the actuation input

history is assembled:

Υ =


u1 u2 · · · um


 . (84)

The dynamics in (83) may be written in terms of the data matrices:

X′ ≈ AX + BΥ. (85)

As in the DMD algorithm (see Sec. 3.1), the leading eigenvalues and eigenvectors of
the best-fit linear operator A are obtained via dimensionality reduction and regression.
If the actuation matrix B is known, then it is straightforward to correct for the actuation
and identify the spectral decomposition of A by replacing X′with X′−BΥ in the DMD
algorithm:

(
X′ −BΥ

)
≈ AX. (86)

When B is unknown, both A and B must be simultaneously identified. In this case,
the dynamics in (85) may be recast as:

X′ ≈
[
A B

] [X
Υ

]
= GΩ, (87)

and the matrix G =
[
A B

]
is obtained via least-squares regression:

G ≈ X′Ω†. (88)

The matrix Ω =
[
X∗ Υ∗

]∗ is generally a high-dimensional data matrix, which may
be approximated using the SVD:

Ω = ŨΣ̃Ṽ∗. (89)
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The matrix Ũ must be split into two matrices, Ũ =
[
Ũ∗1 Ũ∗2

]∗, to provide bases for
X and Υ. Unlike the DMD algorithm, Ũ provides a reduced basis for the input space,
while Û from

X′ = ÛΣ̂V̂∗ (90)

defines a reduced basis for the output space. It is then possible to approximate G =[
A B

]
by projecting onto this basis:

G̃ = Û∗G

[
Û
I

]
. (91)

The resulting projected matrices Ã and B̃ in G̃ are:

Ã = Û∗AÛ = Û∗X′ṼΣ̃−1Ũ∗1Û (92a)

B̃ = Û∗B = Û∗X′ṼΣ̃−1Ũ∗2. (92b)

More importantly, it is possible to recover the DMD eigenvectors Φ from the eigende-
composition ÃW = WΛ:

Φ = X′ṼΣ̃−1Ũ∗1ÛW. (93)

Ambiguity in identifying closed-loop systems

For systems that are being actively controlled via feedback, with u = Kx,

xk+1 = Axk + Buk (94a)
= Axk + BKxk (94b)
= (A + BK)xk, (94c)

it is impossible to disambiguate the dynamics A and the actuation BK. In this case,
it is important to add perturbations to the actuation signal u to provide additional
information. These perturbations may be a white noise process or occasional impulses
that provide a kick to the system, providing a signal to disambiguate the dynamics
from the feedback signal.

4.3 Koopman operator nonlinear control

For nonlinear systems, it may be advantageous to identify data-driven coordinate
transformations that make the dynamics appear linear. These coordinate transforma-
tions are related to intrinsic coordinates defined by eigenfunctions of the Koopman
operator (see Sec. 2). Koopman analysis has thus been leveraged for nonlinear estima-
tion [67, 68] and control [32, 28, 56].

It is possible to design estimators and controllers directly from DMD or eDMD
models, and Korda et al. [32] used model predictive control (MPC) to control nonlin-
ear systems with eDMD models. MPC performance is also surprisingly good for DMD
models, as shown in Kaiser et al. [29]. In addition, Peitz et al. [56] demonstrated the

Copyright © 2019 Brunton & Kutz, Cambridge University Press. All Rights Reserved.



4.3 Koopman operator nonlinear control 33

use of MPC for switching control between a small number of actuation values to track
a reference value of lift in an unsteady fluid flow; for each constant actuation value, a
separate eDMD model was characterized. Surana [67] and Surana and Banaszuk [68]
have also demonstrated excellent nonlinear estimators based on Koopman Kalman fil-
ters. However, as discussed previously, eDMD models may contain many spurious
eigenvalues and eigenvectors because of closure issues related to finding a Koopman-
invariant subspace. Instead, it may be advantageous to identify a handful of relevant
Koopman eigenfunctions and perform control directly in these coordinates [28].

In Sec. 3, we described several strategies to approximate Koopman eigenfunctions,
ϕ(x), where the dynamics become linear:

d

dt
ϕ(x) = λϕ(x). (95)

In Kaiser et al. [28] the Koopman eigenfunction equation was extended for control-
affine nonlinear systems:

d

dt
x = f(x) + Bu. (96)

For these systems, it is possible to apply the chain rule to d
dtϕ(x), yielding:

d

dt
ϕ(x) = ∇ϕ(x) · (f(x) + Bu) (97a)

= λϕ(x) +∇ϕ(x) ·Bu. (97b)

Note that even with actuation, the dynamics of Koopman eigenfunctions remain linear,
and the effect of actuation is still additive. However, now the actuation mode∇ϕ(x)·B
may be state dependent. In fact, the actuation will be state dependent unless the direc-
tional derivative of the eigenfunction is constant in the B direction. Fortunately, there
are many powerful generalizations of standard Riccati-based linear control theory (e.g.,
LQR, Kalman filters, etc.) for systems with a state-dependent Riccati equation.
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[42] A. Mardt, L. Pasquali, H. Wu, and F. Noé. VAMPnets: Deep learning of molecular kinetics. Nature
Communications, 9(5), 2018.

[43] J. E. Marsden and T. S. Ratiu. Introduction to mechanics and symmetry. Springer-Verlag, 2nd edition,
1999.
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[54] F. Nüske, R. Schneider, F. Vitalini, and F. Noé. Variational tensor approach for approximating the
rare-event kinetics of macromolecular systems. J. Chem. Phys., 144(5):054105, 2016.

[55] S. E. Otto and C. W. Rowley. Linearly-recurrent autoencoder networks for learning dynamics. arXiv
preprint arXiv:1712.01378, 2017.

[56] S. Peitz and S. Klus. Koopman operator-based model reduction for switched-system control of PDEs.
arXiv preprint arXiv:1710.06759, 2017.

[57] L. Perko. Differential equations and dynamical systems, volume 7. Springer Science & Business Media,
2013.

[58] J. L. Proctor, S. L. Brunton, and J. N. Kutz. Dynamic mode decomposition with control. SIAM Journal
on Applied Dynamical Systems, 15(1):142–161, 2016.

[59] J. L. Proctor and P. A. Eckhoff. Discovering dynamic patterns from infectious disease data using
dynamic mode decomposition. International health, 7(2):139–145, 2015.

[60] Q. Qu, J. Sun, and J. Wright. Finding a sparse vector in a subspace: Linear sparsity using alternating
directions. In Advances in Neural Information Processing Systems 27, pages 3401—-3409, 2014.
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