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We present four studies that use asymptotic methods to understand physical phenom-
ena in boundary-layer and interfacial flows.

First, we present solutions for the shapes of static equilibria in rectangular channels
that have been perturbed by isolated ridges and grooves and by scattered bump protru-
sions and intrusions. We solve the Young–Laplace equation to quantify the sensitivity
of the meniscus shape to the perturbations using a combination of numerical compu-
tations and asymptotic techniques for a linearised model when the amplitude of the
perturbations is small relative to the channel height. For small-amplitude ridge/groove
and bump perturbations, we derive an equation for the induced pressure difference over
the meniscus that depends solely on the boundary data. Thus the total pressure dif-
ference over the meniscus (and therefore the mean curvature) can be found without
solving the Young–Laplace equation. Mirror symmetric ridge and bump perturbations
which change the volume of the channel cause a change in the mean curvature of the
meniscus which leads to long-range curvature of the contact line. For ridge perturba-
tions, we show that this long-range curvature matches onto the contact line of a droplet
with the same mean curvature as the meniscus. We use this information to choose
specific combinations of perturbations to engineer contact line shapes. We present
preliminary results for bump intrusions/protrusions which show that the direction of
deformation of a meniscus changes as it passes over a bump.

Next, we present an asymptotic description of nonlinear equilibrium and travelling-
wave solutions of the Navier–Stokes equations in incompressible unsteady boundary-
layer and compressible parallel boundary-layer flows. The solutions take the form
of self-sustaining vortex-wave interaction-type states, known as free-stream coherent
structures, with the nonlinear interaction between the vortex and the wave taking place
in a layer close to the free-stream. The interaction produces streaky disturbances that
can grow exponentially due to interaction with the base flow. We first extend the
asymptotic theory of Deguchi and Hall (2014a) to show that free-stream coherent
structures can be embedded in unsteady two-dimensional boundary layers. The time
evolution of the structure is affected strongly by the unsteady base flow, and ultimately
it can only persist for a finite time. Next, we describe free-stream coherent structures
in compressible parallel boundary layer flows in the subsonic and moderate supersonic
regimes. These flows are more industrially relevant to laminar flow control than the
previously studied incompressible flows. The key result is that the equations for the
nonlinear interaction of the vortex and wave in the layer near the free-stream are
identical to those obtained in the incompressible problem, but the velocity field now
also drives a passive thermal field. The resulting disturbances to both the velocity
and temperature fields can then grow exponentially towards the wall; the maximum
amplitude of the disturbances depends on the Mach number and the Prandtl number.
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Chapter 1

Introduction

A fluid is a substance that flows and can be freely deformed. Many natural phenomena

and biological and industrial processes involve the behaviour of fluids; for example,

the flow of blood around the body, the behaviour of magma inside the earth’s core, the

flow of wind past a turbine blade, the motion of an avalanche and the slow deformation

of glass window panes. In this thesis, we study fluid phenomena in two specific scenar-

ios. First, we investigate the behaviour of fluids confined in microchannels when the

geometry of the channel is perturbed. These problems typically involve spatial scales

of the order of millimetres. Secondly, we consider the structure underpinning many

turbulent fluids (for which the velocity varies irregularly in both space and time). Tur-

bulent flows are associated with problems involving scales of metres (for example, the

turbulent flow over an aeroplane wing) through to hundreds of kilometres (for example

in the ocean and atmosphere).

These problems both have important industrial applications. In recent years the

unique behaviour of fluids in microchannels has been exploited to create ‘micro-fluidic

devices’ which have been used in a wide range of industrial and scientific processes; for

an overview see e.g. Stone, Stroock and Ajdari (2004), Ajaev and G. Homsy (2006),

Anna (2016), and Venkatesan et al. (2020). Manufacturing such devices without im-

perfections is challenging due to the small scales involved (Stone, Stroock and Ajdari,

2004; Lohse, 2022), and therefore one of the key questions we may ask is how small

geometric imperfections affect the flow in a confined geometry. An understanding of

the effects of geometry enables exploitation of these effects as in some cases surface

roughness may enhance the desired effect of the device, for example by increasing heat

8
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transfer performance (Jia et al., 2019).

Meanwhile, controlling turbulent flows is extremely important in many applica-

tions: for example, one of the key challenges to overcome in the design of aeroplanes

is how to control and reduce the drag and noise production that are associated with

the turbulent flow around the plane. Until quite recently, it was thought that turbu-

lence was random and chaotic. Indeed, it may be difficult to distinguish any pattern

in a body of white water or turbulent smoke from a match. The groundbreaking ex-

periments of Kline et al. (1967) at Stanford University were the first to show that

complicated turbulent flows could have structure sitting in the background. This

structure effectively consisted of vortices and areas of high and low-speed flow. An un-

derstanding of the structure sitting behind the turbulence could lead to the ability to

exploit and modify the turbulent flow, and hence to control drag and noise production

in aeronautical settings.

To gain an understanding of these (and other) problems we wish to model the be-

haviour of fluids. However, physical phenomena involving the motion of fluids operate

across a wide range of temporal and spatial scales and involve fluids with vastly differ-

ent physical properties. Therefore, it might be expected that writing down equations

to govern the motion of a general fluid is a difficult task. However, incredibly, it is

believed that the motion of many fluids is governed by the same equations which are

derived from conservation of mass and energy, and Newton’s laws of motion (Newton,

1833).

1.1 The Navier–Stokes equations

The Navier–Stokes equations are partial differential equations which are widely used

to describe the motion of viscous fluids. They are attributed to the physicists Claude-

Louis Navier and George Gabriel Stokes, and were written down for the first time in

the 19th century. For a general compressible flow with velocity u, they are given by

ρ

(
∂u

∂t
+ u · ∇u

)
= −∇p+ F+∇ ·

(
µ

(
∇u+ (∇u)T − 2

3
(∇ · u)I

))
, (1.1)

∂ρ

∂t
+∇ · (ρu) = 0, (1.2)
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where t denotes time, ρ is the density, p is the pressure, µ is the dynamic viscosity, F

represents any body force per unit volume acting on the fluid, I is the identity tensor

and superscript T denotes transpose; for a derivation see e.g. Batchelor (2000). In

deriving these equations it is assumed that the stress can be expressed as a linear

constitutive equation involving velocity and dynamic viscosity, and that the bulk vis-

cosity λ = −2
3
µ. The first equation (1.1) expresses conservation of momentum (derived

from Newton’s second law (Newton, 1833)) and the second equation (1.2) expresses

conservation of mass. For temperature-dependent flows they are also solved subject

to an energy equation, which is derived from the first law of thermodynamics and

expresses conservation of energy (Stewartson, 1964), and an equation of state relating

the pressure, density and temperature.

1.1.1 Boundary conditions

This discussion is based on the overview given in Batchelor (2000).

The Navier–Stokes equations must be solved subject to appropriate boundary con-

ditions which impose that velocity and stress (force per unit area) must be continuous

across any material boundary. The realisation of these conditions varies depending on

the type of boundary. We describe two common scenarios relevant to the work in this

thesis.

The first common type of boundary is a fluid-solid boundary. In general, at a rigid

solid boundary, the fluid sticks to the surface so that continuity of velocity requires

both the tangential and normal components of fluid velocity to match the velocity of

the solid. The former condition is known as ‘no-slip’, while if the boundary is imperme-

able, the latter condition is known as ‘no-penetration’. The no-slip condition becomes

problematic at the intersection of a fluid-fluid interface with a rigid surface (a contact

line). Moving contact lines can be observed in many situations, for example the spread

of a droplet placed on a solid surface, or the rise of mercury in a thermometer. Thus,

analysis of moving contact lines on a stationary surface with a no-slip condition leads

to a paradox; mathematically, unbounded forces can be produced at the contact line

(Dussan V. and Davis, 1974), leading to a singularity in the flow field. This singularity

is resolved by allowing the fluid to slip along the wall (Dussan, 1976), which is known
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Figure 1.1: Sketch illustrating a free surface z = H(x, y, t) separating fluids A and B
with unit normal vectors n̂ and n̂′ respectively and unit tangent vector t̂.

as a ‘slip’ condition.

Meanwhile another common boundary is a fluid-fluid interface, where continuity of

velocity and stress must be imposed at a known or unknown boundary. In the latter

case, we have a ‘free boundary’ problem, where we are required to find the form of the

boundary as part of the solution. We require two conditions: a ‘kinematic’ condition,

relating the velocity of the free surface to the velocity of the bounding fluids at the free

surface (continuity of velocity) and a ‘dynamic’ condition, requiring the continuity of

stress across the free surface separating the two liquids.

The kinematic condition requires that there is zero rate of change of material fluid

elements on the free surface due to the velocity field u acting on it; that is, fluid

elements on the free surface remain on it. So if the location of free surface in space

and time is described by z = H(x, y, t) in Cartesian coordinates (x, y, z) (see figure

1.1), then it has zero material derivative so that

DH

Dt
=

∂H

∂t
+ u ·∇H = 0. (1.3)

Meanwhile, since stress is defined as force per unit area, to examine the dynamic

condition in more detail it is first necessary to understand the forces acting at the

free surface. We consider as an example a fluid-fluid interface taking the form of a

liquid-vapour interface, for example, air and water. A liquid molecule within the bulk
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of the liquid experiences a stronger force of attraction to the liquid molecules which

surround it than a liquid molecule at the free surface which is only partly surrounded

by liquid molecules. Therefore the molecules at the free surface are in a higher energy

state. The system works to reduce the number of these high-energy molecules, and

thus the fluid system acts to minimise the area of the free surface. Surface tension σ

is defined as a measure of the energy loss of a molecule at the free surface relative to a

molecule in the bulk of the fluid per unit area, and has units of energy per unit area, or

equivalently, force per unit length. Since surface tension only acts at the free surface,

it does not appear in the Navier–Stokes equations and therefore acts only through the

stress balance boundary condition.

The force acting on the interface due to surface tension can be split into a force

acting normally to the interface (direction n̂, see figure 1.1), which is associated with

the local curvature of the interface∇·n̂, and a force acting tangentially to the interface

(direction t̂), which is associated with surface tension gradients ∇σ. We require conti-

nuity of stress (force/area) across the interface separating fluids A and B. Performing

a force balance for the forces acting on each side of the free surface and integrating over

the free surface shows that the difference between the stress (force/area) exerted on

fluid A by fluid B must be balanced by the force per unit area due to surface tension.

If the components of the surface forces normal to the boundary and tangential to it

are considered separately, then the dynamic boundary condition says (i) the jump in

normal hydrodynamic stress (force/area) across the interface must balance the force

per unit area due to curvature associated with surface tension and (ii) the jump in

tangential hydrodynamic stress (force/area) across the interface must balance the local

surface tension gradient.

1.1.2 Solutions of the Navier–Stokes equations

To find the behaviour of a particular fluid, the task is to find the functions u, p, µ,

and ρ (and the temperature field for a thermodynamic flow) subject to appropriate

boundary conditions for the situation. However, this is, in general, a difficult task as

the Navier–Stokes equations (1.1)–(1.2) are nonlinear, and exact solutions only exist

under the assumption of various simplifications which may not be physically relevant.

Computer simulations can be used to find approximate solutions; however, for large



1.1. THE NAVIER–STOKES EQUATIONS 13

or complex problems, this can require massive computing power. Moreover, it has

not yet been proven that solutions of the general Navier–Stokes equations (1.1)–(1.2)

always exist (Ladyzhenskaya, 2003).

However, in practice, we can obtain insights into fluid behaviour through solving

reduced versions of the equations through various assumptions, simplifications and

asymptotic limits for specific types of flows. As discussed above, in this thesis we

consider two specific problems: the first involving fluids in microchannels and the

second involving turbulent flows. These problems require us to consider two special

cases of the equations: static fluid-fluid interfaces and boundary-layer flows.

1.1.3 Static fluid-fluid interfaces

For problems involving two fluids, we must solve the Navier–Stokes equations in each

fluid and and apply continuity of velocity and stress at the interface separating the

fluids, together with any relevant conditions at solid boundaries confining the fluid

system. In a static flow the velocity u is set to zero and therefore in each fluid the

Navier–Stokes equations (1.1)–(1.2) reduce to

F = ∇p. (1.4)

The tangential component of hydrodynamic stress of each static fluid acting on

the interface is zero (which means there are no surface tension gradients from the

tangential stress balance). Moreover, the jump in normal hydrodynamic stress across

the interface is equivalent to a jump in pressure. Therefore for static fluids, the

stress balance condition says that the pressure jump across the fluid-fluid interface

must be balanced by the force per unit area due to curvature associated with surface

tension. This balance is commonly known as the Young–Laplace equation after the

mathematicians Thomas Young and Pierre-Simon Laplace, and is given by:

∆p = σ∇ · n̂, (1.5)

where ∆p is the pressure jump across the free surface. In the absence of body forces F

we solve this equation, together with any boundary conditions associated with the solid

walls confining the fluid, for the shape of the free surface. The Young–Laplace equation

is nonlinear; exact solutions can be found for certain fluid systems and in general, it
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can be solved numerically. However we can gain insights into specific features of a

problem in relevant asymptotic limits.

Although we have here considered the Young–Laplace equation as deriving from

Navier–Stokes with stress-balance boundary conditions at a fluid-fluid interface, this

equation was written down in the early 19th century, some years before the Navier–

Stokes equations. Young first introduced the idea of mean curvature and a theory

describing surface tension, while Laplace later wrote down the formal analytical ex-

pression (1.5) that is known as the Young–Laplace equation. Laplace’s arguments

were based on hydrostatic balances in the context of capillary rise in a tube. The Ger-

man mathematician Carl Friedrich Gauss is often not credited in the derivation of the

Young–Laplace equation, however, he later provided a rational analytic derivation of

the equation through the principle of virtual work (see Finn (2012) for details) which

helped elucidate the physics of the problem and unified the qualitative arguments of

Young with the mathematical arguments of Laplace.

1.1.4 Interfacial phenomena

The following discussion is based on material from De Gennes (1985), Quéré (2008)

and Herminghaus, Brinkmann and Seemann (2008). For illustration, we consider

three-phase solid-liquid-vapour systems.

As fluid systems become smaller, surface tension dominates gravity on scales less

than the capillary length which is defined as σ/
√
ρg, with g the magnitude of the

gravitational field. Fluids dominated by surface tension exhibit a range of fascinating

interfacial phenomena; many of these effects are shown in the video series G. M. Homsy

(2008). As discussed above, surface tension does not appear in the Navier–Stokes

equations and only appears in the stress balance boundary condition at the fluid-

fluid interface. Thus in small fluid systems, the boundaries become very important.

Particularly, when a fluid meets a solid boundary, wetting of the solid can occur.

This wetting can take many forms, for example, a droplet on a surface could spread

into a film to minimise surface energy, or could form a spherical cap sitting on the

solid surface (for example, a droplet on a leaf). The difference between these states

is defined by the contact angle, ϕ, between the liquid-vapour interface and the solid

boundary. For ϕ > π/2 the surfaces are hydrophobic while hydrophilic surfaces have
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ϕ < π/2. So-called superhydrophobic surfaces, when ϕ > 5π/6, are desired for many

industrial applications including self-cleaning surfaces (Liu and Jiang, 2012).

At the same time as he was developing his theory of surface tension and mean

curvature, Young (1805) also deduced a law relating the contact angle ϕ to the surface

energies of the solid-liquid, liquid-vapour and solid-vapour interfaces γSL, γLV and γSV

respectively:

γSV = γSL + γLV cosϕ. (1.6)

This law was deduced by considering force balances at the point where the interface

touches the solid (known as the contact line). The shape of a static meniscus is

prescribed by the contact angle ϕ between the liquid-vapour interface and the solid,

and the balance between hydrostatic pressure and pressure associated with curvature

(the Young–Laplace equation (1.5)). Thus in theory, if the surface energies are known,

it is possible to write down the shape of a meniscus using Young’s contact angle law

(1.6) and the Young–Laplace equation (1.5). However, the situation is often not quite

so straightforward as the static contact angle may not take its equilibrium value.

Contact angle hysteresis

As a liquid wets a solid the contact line moves. Measurements taken from these

dynamic contact lines yield so-called advancing and receding contact angles which can

be different to the equilibrium contact angle observed in static systems. The observed

static contact angle ϕ∗ can take any value between the advancing and receding contact

angles; contact angle hysteresis is defined as the difference between the advancing and

receding contact angles. This range of contact angles may arise from many factors

including surface roughness.

Chemical heterogeneity or surface roughness can impede contact line motion as the

liquid has to overcome an energy barrier to wet the surface over the roughness. The

American scientist Josiah Gibbs was the first to realise that this means surface rough-

ness leads to pinning of the contact line on the roughness. Pinning in turn increases

the interfacial area, which is energetically costly. Thus further contact line motion is

resisted, and the contact angle adjusts instead to keep the system in equilibrium, and

so a drop wetting a rough surface will, in general, have a contact angle ϕ∗ which is

different from the contact angle ϕ predicted by Young’s Law (1.6). Wenzel (1936) gave
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an argument for rough surfaces to suggest that if the surface is hydrophobic (ϕ > π/2)

then in general ϕ∗ > ϕ, whereas hydrophilic surfaces (ϕ < π/2) have ϕ∗ < ϕ. Thus the

hydrophobicity/hydrophilicity of a solid is enhanced by heterogeneity. This effect can

be exploited to manufacture surfaces, for example with superhydrophobic properties to

be used for corrosion resistance (Darband et al., 2020). The effect of surface roughness

on the system is also determined by whether the liquid wets the surface completely

(Wenzel, 1936) or whether air pockets are trapped between the surface and the liquid

(Cassie and Baxter, 1944). These states lead to increased and decreased hysteresis

respectively.

Since most manufactured surfaces are rough, contact angle hysteresis is present

in many industrial processes. However, as Herminghaus, Brinkmann and Seemann

(2008) discuss, while hysteresis effects may dominate on a large scale, these effects

can play a minor role in microscopic interactions and therefore it is possible to use

simple theoretical models of wetting as a starting point for describing liquids on rough

surfaces.

1.1.5 Boundary-layer flows

We now turn our attention to a different reduction of the Navier–Stokes equations

(1.1)–(1.2) which describes flows for which the viscosity is very small. The Navier–

Stokes equations (1.1)–(1.2), together with boundary conditions, contain parameters µ

and ρ which can affect the behaviour of the partial differential equations and constants

associated with the boundary conditions which may be dimensional. When using the

equations, it is often more convenient to non-dimensionalise and carry out the analysis

in terms of the smallest number of parameters possible (which is determined by the

Buckingham π theorem (Buckingham, 1914)). Particularly, non-dimensionalising the

Navier–Stokes equations (1.1)–(1.2) leads to the emergence of a dimensionless number

known as the Reynolds number, which is characterised by the typical length scales L

and flow speed U , and kinematic viscosity ν = µ/ρ of the flow:

Re =
ρUL

µ
. (1.7)

The Reynolds number measures the relative importance of inertial forces to viscous

forces in the system and is named after Osborne Reynolds, who performed experiments
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in the late 1800s at the University of Manchester to characterise flows, particularly

the breakdown of laminar flow, using this parameter. If the Reynolds number is large

we expect viscous effects to be negligible throughout much of the fluid, whereas we

expect viscous effects to be important for small Reynolds number.

At high Reynolds numbers Re, the flow is essentially inviscid. If we solve the

Navier–Stokes equations with dynamic viscosity µ → 0, i.e. Re → ∞, then the

highest-derivative terms are lost from the momentum equation (1.1). However at

the boundary, the flow must still satisfy no-slip boundary conditions; we now have

too many boundary conditions to satisfy. This observation, and the theory to deal

with it, was developed by the German physicist Ludwig Prandtl in the early 20th

century. To allow the flow to satisfy the no-slip boundary conditions, a thin viscous

layer is introduced close to the boundary where the tangential velocity adjusts from

the boundary velocity to its inviscid value; this is known as a boundary layer. We

then solve for the flow in an outer region where viscous effects are neglected. The

scalings of the flow variables in each layer are found by comparing the relative sizes

of terms in the equations of motion; in the boundary layer, inertial and viscous terms

must balance. The solutions are matched using the method of matched asymptotic

expansions.

It is important to note that singular regions can also develop away from boundaries.

In general, we need to introduce a smoothing viscous layer anywhere where we obtain

a discontinuity in a velocity distribution derived from the inviscid equations.

1.1.6 Boundary-layer phenomena

In general, the Navier–Stokes equations behave well for small Reynolds numbers and

in many cases, unique solutions can be shown to exist. However, at high Reynolds

numbers, the nonlinear u · ∇u term gains in significance and the flow can become

turbulent. This process was first observed by Osborne Reynolds in 1883 using his

now-famous apparatus which still exists at the University of Manchester.

As discussed above, subsequent experiments (beginning with the study by Kline

et al. (1967)) have indicated that there is structure underpinning turbulent flows; for

an overview of the types of structures observed see e.g. Robinson (1991) and Jiménez

(2018). Since the initial study by Kline et al. (1967) in the mid-20th century, massive



18 CHAPTER 1. INTRODUCTION

advances in computing power have enabled new insights into solutions of the Navier–

Stokes equations (1.1)–(1.2) through direct numerical simulations. Particularly, fully

nonlinear solutions of the Navier–Stokes equations at finite Reynolds numbers have

been found which exhibit features of the coherent structures observed in turbulent flow;

these solutions have been found numerically in a wide range of situations including

channel flows (e.g. Nagata (1990), Kawahara and Kida (2001), and Wang, Gibson

and Waleffe (2007)) and pipe flows (e.g. Faisst and Eckhardt (2003) and Wedin and

Kerswell (2004)). These states are often known as “self-sustaining processes” (SSP).

The basic physics of the SSP states is understood to be a self-sustaining tripartite

interaction of vortices and waves. The description that follows is based on the work of

Waleffe (1997) in the context of shear flows, which itself has its origins in earlier work

by Benney (1984) on the nonlinear evolution of a three-dimensional mean shear flow.

To illustrate the physics of the system, we first take Cartesian coordinates (x, y, z)

in the parallel, normal and spanwise directions respectively relative to a solid wall.

In a shear flow with streamwise velocity U(y), the introduction of a perturbation in

the wall-normal direction (for example, a cross-stream jet) leads to streamwise rolls

(pairs of counter-rotating vortices) u = (0, v(y, z), w(y, z)). These rolls redistribute

the background mean shear flow by lifting slow fluid up and pulling fast fluid down,

which creates a pattern of x-independent “streaks” u(y, z) of high and low-speed flow.

These streaks are named for the patterns seen in the experiments of Kline et al. (1967),

where hydrogen bubbles released in the near-wall region of turbulent shear flows made

streaky patterns. The streaky flow is unstable, leading to the growth of a ‘streak-

sloshing’ wavy mode. However, the instability of the streak removes energy from the

streak, so could accelerate the transition back to the laminar state. Therefore, to

sustain the nonlinear interaction, there must be feedback from the streak instability

to regenerate the rolls which is driven by a three-dimensional nonlinear mechanism.

This process is depicted in figure 1.2. Thus it is possible to obtain exact solutions of

the Navier–Stokes equations consisting of wavy streaks flanked by staggered, counter-

rotating streamwise vortices, as shown in the inset to figure 1.2 which is from Waleffe

(2003).

Computationally-generated nonlinear SSP equilibrium solutions of the Navier Stokes

equations are often known as ‘exact coherent structures’ since they are exact solutions
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Figure 1.2: The self-sustaining tripartite interaction of vortices and waves form-
ing coherent structures. The top graph (a) shows a streamwise roll flow u =
(0, v(y, z), w(y, z)) with the basic shear flow U(y) into the page. Graph (b) shows
the development of streaks u(y, z), which leads to a wavy streak mode shown in (c)
where the red lines denote lines of constant velocity. The inset figure (d) is from
Waleffe (2003) which shows isosurfaces for the streamwise velocity (green) and the
streamwise vorticity (red/blue) so that the wavy streak flow is coloured green and the
red and blue colours are used for the counter-rotating vortices.
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that exhibit some of the coherent motions observed in turbulent flow. The modes

split up into what are termed upper and lower branch modes; the branches arise as a

saddle–node bifurcation as the Reynolds number is increased, as explained by (Wang,

Gibson and Waleffe, 2007), with the lower branch states (associated with low drag

flows) relating to fully turbulent flows while the upper branch states (associated with

high drag flows) relating to bypass transition as discussed by e.g. Schneider et al.

(2008). Note that this terminology is at odds with the usual one for linear stability

theory. Thus exact coherent structures are thought to form the unstable ‘scaffold’ on

which turbulent flows evolve; for an overview see, for example, Graham and Floryan

(2021). The upper branch states associated with high Reynolds number nonlinear

transition are not the focus of the studies in this thesis and we shall instead concen-

trate on the lower branch states which are thought to provide a route to understanding

the structure underpinning turbulent flows.

Computation of SSP states at high Reynolds numbers becomes difficult because the

layer where the nonlinear interaction between the wave, roll and streak occurs, in which

the flow changes rapidly, becomes vanishingly small and thus the flow can be difficult

to resolve in this layer. At the same time as SSP states were being found numerically

by Nagata (1990) and others, Hall and Smith (1991) developed a high-Reynolds num-

ber asymptotic theory for a vortex-wave interaction mechanism describing a three-

point coupling between a wave and a roll-streak flow in much the same manner as

the SSP states described above; however, the theory was applied to boundary-layer

transition where it was shown to not be particularly relevant. Some twenty laters

later, Hall and Sherwin (2010) showed that vortex-wave interaction theory describes

lower-branch SSP states at finite Reynolds number with remarkable accuracy com-

pared to the computationally-generated solutions of Wang, Gibson and Waleffe (2007).

With current computing power, the asymptotic approach is much more viable at high

Reynolds numbers than the computations. To understand the vortex-wave interaction

mechanism it is first helpful to first understand another boundary-layer phenomenon

that can arise in oscillatory boundary layers.
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Oscillatory boundary layers: steady streaming

This discussion is based on the work of Stuart (1966), the review by Riley (2001) and

the overview in Batchelor (2000) for incompressible flows, and the reader is referred

to these texts for full mathematical details.

Consider a system with Cartesian coordinates (x, y, z) in the parallel, normal and

spanwise directions respectively with respect to a solid wall. If the solid boundary is

oscillating with sinusoidal motion then an oscillatory boundary layer occurs because

the fluid velocity must match the solid velocity at the interface. Then the external

velocity field in the free-stream will have a non-zero tangential velocity relative to the

boundary, u = Real(U(x)e−iωt), where U(x) varies with position on the boundary.

This solution is used as a boundary condition to find the boundary-layer solution,

which shows that the amplitude of the streamwise velocity u varies rapidly across the

boundary layer.

Then, if U ′(x) ̸= 0, i.e. the inviscid outer flow has non-zero tangential varia-

tion, then by the continuity equation (1.2), throughout the boundary layer, there is

a non-zero transverse velocity in the direction normal the boundary. Solving for this

transverse velocity (see e.g. Batchelor (2000)) shows that this results in an average

net transport of momentum in the tangential and transverse directions to the bound-

ary; these time-averaged transport terms are called wave-induced Reynolds stresses.

The transport of momentum is an inherently nonlinear effect and is dependent on the

amplitude of the oscillation.

Because the amplitude of the streamwise velocity u varies rapidly across the bound-

ary layer, the Reynolds stresses also vary across the boundary layer. The varying stress

induces a non-zero average force on the fluid in the boundary layer. This generates

steady motion of the fluid. This induced velocity does not decay to zero at the edge

of the boundary layer so an outer ‘steady streaming’ flow is generated.

Vortex-wave interaction theory

This discussion is based on the papers by Hall and Smith (1991) and Hall and Sherwin

(2010); the reader is referred to these papers for full mathematical details.

Based on the discussion of steady-streaming above, we now explain the vortex-wave
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interaction mechanism. We again take Cartesian coordinates (x, y, z) in the parallel,

normal and spanwise directions respectively with respect to a solid wall. Firstly,

consider a streamwise vortex flow: this is a shear flow (u(y), 0, 0) which is modified

to produce a spanwise-periodic velocity field u(y, z). As for the description of SSP

states, the streamwise velocity component u is the streak while the v, w components

are the streamwise roll, and the streamwise rolls and downstream streaks then make a

streamwise vortex. At high Reynolds numbers Re, the Navier–Stokes equations (1.1)–

(1.2) admit an exact solution with the streaky flow u = O(1) and the streamwise rolls

v ∼ w ∼ Re−1; these scalings are based on the scalings for Taylor vortices derived

by Taylor (1923) in the small gap/thin boundary layer limit. Since at high Reynolds

numbers the roll velocity components v, w are tiny compared to the streak u, any small

interference or forcing of these components can have a large effect on the total velocity

u and this is essentially the idea behind the vortex-wave interaction mechanism, with

the forcing provided by a wave.

Inviscid waves propagating on a flow have a singularity where the phase speed of

the wave matches the speed of the background flow. To smooth out this singularity,

a thin, viscous critical layer centred around the singularity is introduced (Lin, 1955).

Thus the system now has a thin viscous oscillatory layer that is bounded on both sides

by inviscid fluid; this is analogous to an oscillatory boundary layer from which we can

get steady streaming effects as described above.

As in the steady streaming process, the rapid variation of wave amplitude across the

critical layer generates wave Reynolds stresses which vary across the layer generating

mean motion. However, the critical layer is bounded on both sides by fluid, which

changes the situation somewhat. As discussed above in §1.1, at any fluid interface

we require continuity of stress and velocity. However, an analysis of the momentum

equation for velocity parallel to the critical layer shows that the mean motion generated

by the wave Reynolds stresses leads to a jump in mean stresses parallel to the critical

layer, which must be balanced by a jump in roll shear. Meanwhile, an analysis of the

momentum equation for velocity normal to the critical layer shows that the streaming

motion also generates a centripetal acceleration of the wave which is balanced by a

jump in roll pressure; for a full mathematical description of this analysis see Hall and

Sherwin (2010). These jumps must be accommodated by the roll velocity field in the
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bulk of the flow, and thus the wave forcing drives the roll flow. The streak can then

be unstable to a wave so that the system is fully interactive.

Vortex-wave interaction theory provides a high-Reynolds-number description of

lower-branch SSP states at finite Reynolds number, and results are in excellent agree-

ment with numerical results; see, for example, Hall and Sherwin (2010). The strength

of the agreement is somewhat surprising as high Reynolds number theory is often not

particularly useful for the description of boundary layer processes and linear stabil-

ity when compared to numerical simulations at finite Reynolds numbers. It is so far

unclear as to why the agreement is so good.

Free-stream coherent structures

There are other types of exact coherent structures which are not described by the

inviscid vortex-wave interaction theory. Free-stream coherent structures are a specific

type of exact coherent structure that were first described in the context of the incom-

pressible parallel asymptotic suction boundary layer by Deguchi and Hall (2014a), in

which the roll–wave–streak interaction is confined to take place in a viscous layer at

the edge of the boundary layer. They are thus quite distinct from the exact coherent

structures seen in the main part of the boundary layer, however, are similar in that

many waves interact to produce a single spanwise periodic flow outside the critical

layer. Note that although they are called free-stream coherent structures, they are

still associated with a boundary layer at a wall.

In the free-stream coherent structure solutions, the waves driving the interaction

are viscous rather than inviscid so that equations governing the wave, roll and streak

cannot be separated and the nonlinear interaction mechanism between the wave, roll

and streak cannot be explicitly described by the critical layer/steady streaming theory

for inviscid waves. Instead, the crucial point is that the existence of the layer where

the nonlinear interaction takes place is fixed by the boundary-layer form of the basic

flow, i.e. the exponential decay of the basic flow to its free-stream form.

The interaction in this viscous layer, which is of approximately the same thick-

ness as the (non-dimensional) boundary-layer thickness, produces global disturbances

to the flow field, hence it is termed the ‘production layer’. In this layer, the flow
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satisfies the reduced Navier-Stokes equations at unit Reynolds number and the roll-

wave-streak interaction is driven by the nonlinearity in these equations. Although the

full Navier–Stokes equation still have to be solved, there is a large saving compared to

the full computational approach which becomes progressively more computationally

demanding as the Reynolds number increases.

The roll–wave–streak flow exiting the production layer towards the wall adjusts

to become compatible with the basic flow, hence this layer is termed the ‘adjustment

layer’. Here, the roll and wave flow decay. However, the streaks, i.e. the x-independent

disturbance to the streamwise velocity field, can continue to grow towards the wall in

the region beneath the production layer before taking their maximum amplitude in

a near-wall layer, which again is of boundary-layer thickness. Thus the free-stream

coherent structures couple the nonlinear interaction in the free-stream to the distur-

bances at the wall, and thus allow for a way for disturbances to get from outside the

boundary layer to the wall.

The asymptotic theory to describe these solutions, which was first developed by

Deguchi and Hall (2014a), is in excellent agreement with numerical solutions found by

Kreilos, Gibson and Schneider (2016) and Deguchi and Hall (2014a). The production-

layer problem has since been shown to be generic to a wide range of flows, including

two-dimensional spatially-growing boundary layers (Deguchi and Hall, 2015a) and

planar jets (Deguchi and Hall, 2018). Ozcakir, Hall and Tanveer (2019) have also

found analogous states in pipe flow.

1.2 Thesis structure

The rest of this thesis is presented in journal format; the papers have been written

as part of my studies and three of the four have been published in journals that have

a history of publishing work in fluid dynamics. Each paper has an introduction and

discussion, and self-contained appendices and bibliography.

The first part of this thesis will use the methods described above to show the effect

of channel geometry on static menisci in confined channels. Here we present a study

of static equilibrium solutions which form the initial state of low capillary number
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(defined as the ratio of viscous drag forces to surface tension forces) dynamical flows.

Chapter 2 shows how we can quantify and describe the sensitivity of static menisci

in confined channels to imperfections in geometry taking the form of isolated ridges

and grooves running the length of the channel. We are interested in knowing the shape

of the meniscus in the perturbed channel and the contact line displacement. The key

result of the work is that small-amplitude perturbations that change the volume of

the channel induce a change in the mean curvature of the meniscus, which results

in long-range curvature of the contact line; we can find this long-range curvature by

matching onto a catenoid/droplet with the same total pressure difference. Thus, we

can predict the far-field behaviour of the contact line a priori just using the boundary

data.

Chapter 3 considers the same problem but with forcing in the form of isolated bump

protrusions and intrusions scattered on the channel walls. This paper has not been

published as work is still ongoing, however, we present some preliminary results for

small-amplitude perturbations which show that the location of the meniscus relative

to the bump affects the direction and amplitude of deformation, and the direction of

deformation smoothly deforms as a meniscus advances over a bump in a quasi-static

manner.

We were originally motivated to study menisci in perturbed channels because of

the effects of channel imperfections seen in the Hele–Shaw problem for air fingers and

bubbles, as described by Tabeling, Zocchi and Libchaber (1987), Thompson, Juel and

Hazel (2014), and Franco-Gómez et al. (2016, 2018). There, the surface roughness

of the channel walls was found to change the set of stable solutions however it was

unclear how the perturbations acted to select a particular set. The simplified model

of a static meniscus in a channel was intended to provide some insight into how to

implement the boundary conditions around the perturbation and how these might be

affected by dynamics. However, the static problem has proved to be interesting and

subtle in its own right.

The second part of this thesis uses the methods discussed above to describe non-

linear free-stream coherent structure-type equilibrium and travelling-wave solutions of

the Navier–Stokes equations.
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In Chapter 4 we show how to obtain free-stream coherent structures in two-

dimensional unsteady incompressible flows (as an extension of two-dimensional spatially-

varying flows discussed in Deguchi and Hall (2015a)). We show that unsteady flows

can be added to the class of incompressible flows which support free-stream coherent

structures.

In Chapter 5 we consider compressible flows (which are more industrially relevant

to drag control than incompressible flows). The key result is that the asymptotic

theory describing exact coherent structures in incompressible flows can be applied to

compressible flows. Since in incompressible flows this theory agrees well with numer-

ical SSP solutions of the Navier–Stokes equations, our study indicates that similar

mechanisms underpinning turbulent flows may be present in compressible flows.

In Chapter 6 we draw together some conclusions.



Chapter 2

The effect of isolated ridges and

grooves on static menisci in

rectangular channels

This chapter contains a paper was written as part of my studies at the University of

Manchester. It appears as:

E. C. Johnstone, A. L. Hazel and O. E. Jensen (2022). “The effect of isolated ridges

and grooves on static menisci in rectangular channels”. J. Fluid Mech. 935, A32.

The paper has a self-contained introduction, discussion, appendices and bibliogra-

phy. Following the paper there are three additional appendices which provide detail

of some aspects of the problem that were not presented in the paper for publication.

Statement of Contributions

EJ performed the asymptotic analysis, numerical computations and analysis to obtain

the required data to answer the research question, wrote the paper and was respon-

sible for the paper throughout the publication process. AH and OJ provided advice,

guidance and supervision throughout all stages of the process, suggested ideas and

direction of the research and provided editorial suggestions. Additionally OJ wrote

the second half of appendix F.

27



J. Fluid Mech. (2022), vol. 935, A32, doi:10.1017/jfm.2022.26

The effect of isolated ridges and grooves on static
menisci in rectangular channels

Eleanor C. Johnstone1,†, Andrew L. Hazel1 and Oliver E. Jensen1

1Department of Mathematics, University of Manchester, Manchester M13 9PL, UK

(Received 28 May 2021; revised 13 December 2021; accepted 7 January 2022)

We present theoretical and numerical results that demonstrate the sensitivity of the
shape of a static meniscus in a rectangular channel to localised geometric perturbations
in the form of narrow ridges and grooves imposed on the channel walls. The
Young–Laplace equation is solved for a gas/liquid interface with fixed contact angle using
computations, analytical arguments and semi-analytical solutions of a linearised model
for small-amplitude perturbations. We find that the local deformation of the meniscus’s
contact line near a ridge or groove is strongly dependent on the shape of the perturbation. In
particular, small-amplitude perturbations that change the channel volume induce a change
in the pressure difference across the meniscus, resulting in long-range curvature of its
contact line. We derive an explicit expression for this induced pressure difference directly
in terms of the boundary data. We show how contact lines can be engineered to assume
prescribed patterns using suitable combinations of ridges and grooves.

Key words: contact lines, capillary flows

1. Introduction

The behaviour of fluids when the dominant force is surface tension underpins many
fundamental physical and industrially valuable processes, including microfluidics and
inkjet printing (Yang, Yang & Hong 2005; He et al. 2017; Calver et al. 2020); directional
transport of liquids in biological processes (Prakash, Quéré & Bush 2008; Zheng et al.
2010; Ju et al. 2012; Comanns et al. 2015; Xu & Jensen 2017; Bhushan 2019); engineering
applications such as water harvesting (Brown & Bhushan 2016; Xu et al. 2016; Li et al.
2017); and the behaviour of fluids in low-gravity situations (Passerone 2011). Moreover,
from a purely theoretical point of view, such systems have been known to exhibit a plethora
of complex behaviours associated with contact-line dynamics, such as contact-angle

† Email address for correspondence: eleanor.johnstone@manchester.ac.uk

© The Author(s), 2022. Published by Cambridge University Press. This is an Open Access article,
distributed under the terms of the Creative Commons Attribution licence (https://creativecommons.
org/licenses/by/4.0/), which permits unrestricted re-use, distribution, and reproduction in any medium,
provided the original work is properly cited. 935 A32-1
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hysteresis (Dussan 1979; Gao & McCarthy 2006; Eral, ’t Mannetje & Oh 2013) and
the ‘stick-slip’ phenomenon (Picknett & Bexon 1977; Bourges-Monnier & Shanahan
1995; Shanahan 1995; Stauber et al. 2014). However, the behaviour that we study here
is that of a very simple static system, which forms the ‘basic state’ for many of these
dynamical problems. Specifically, we seek to quantify and describe the sensitivity of
menisci in confined channels to imperfections in geometry. Understanding such sensitivity
is important in the industrial and biological processes described above, where natural
or manufactured surfaces are in general not perfectly smooth. Indeed, the sensitivity of
microfluidic devices to small imperfections has hampered their usefulness in an industrial
setting (Zhou et al. 2012; Calver et al. 2020). On the other hand, the structuring of channels
by parallel grooves has also been shown to improve the efficacy of microfluidic devices: for
example, railed microfluidic channels have been used to create superhydrophobic surfaces
(Yoshimitsu et al. 2002; Emami et al. 2013), to guide and assemble microstructures inside
fluidic channels (Chung et al. 2008), and in primary cell culture technology to control the
deposition and location of cells within microfluidic devices (Khademhosseini et al. 2004;
Howell et al. 2005; Khademhosseini et al. 2005; Park et al. 2006; Lee, Hung & Lee 2007;
Manbachi et al. 2008; Khabiry et al. 2009; Mobasseri et al. 2015). Stone, Stroock & Ajdari
(2004) also provide a general discussion of the role of channel geometry in controlling
fluids in microchannels. Anna (2016) and Ajaev & Homsy (2006) give a more general
discussion of the modelling and applications of drops and bubbles in microchannels and
confined channels.

It has been known since Wenzel (1936) that menisci in channels are sensitive to
imperfections in the channel geometry. Wenzel’s work demonstrating the effect of wall
roughness on contact-line wettability using simple energy conservation arguments was
further extended for porous surfaces by Cassie & Baxter (1944) and Cassie (1948).
Quasi-static effects such as contact-line hysteresis (at finite microscopic contact angle) and
the stick-slip phenomenon were first observed by Johnson & Dettre (1964), who studied
the wettability of a drop on a rough surface where the roughness was in the form of
concentric circular grooves. By moving the contact line very slowly over the obstacles,
they observed multiple axisymmetric equilibria. Huh & Mason (1977) studied surfaces
with more complex roughness, including cross, hexagonal and radial grooves. They used
the linearised Young–Laplace equation to find a relationship between the contact angle and
hysteresis/stick-slip behaviour. Surfaces with periodic roughness (Cox 1983) and random
roughness (Jansons 1985) were also found to induce contact-angle hysteresis and stick-slip
behaviour in the limit of zero capillary number. More recently, rough surfaces with
Gaussian-type defects have been shown to influence significantly contact-line dynamics in
the contexts of droplet spreading (Espín & Kumar 2015), droplet sliding (Park & Kumar
2017), and droplet evaporation and imbibition (Pham & Kumar 2017, 2019). Jansons (1985)
made the further observation that the location of the contact line influenced its future
position, leading to irreversibility of the wetting process. Stick-slip behaviour can also be
induced by defects caused by changes in wettability or temperature (Ajaev, Gatapova &
Kabov 2020).

Concus & Finn (1969), Fowkes & Hood (1998) and Reyssat (2014) showed that for
static liquid–vapour interfaces in a wedge, the existence of solutions depends on the angle
of the wedge and the contact angle between the liquid–vapour and solid–liquid interfaces.
Instead of imposing perturbations on the channel walls geometrically, it is also possible
to perturb the meniscus by changing the contact angle locally on the upper and lower
channel walls. Boruvka & Neumann (1978) considered a meniscus in contact with a
stripwise heterogeneous wall in which each strip has a different equilibrium contact angle.
They showed that locally near the wall, the contact-line curvature becomes unbounded at
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The effect of ridges and grooves on menisci in channels

the point where the contact angle changes. The jump in contact angle is analogous to a
ridge or groove perturbation with corners; here the displacement of the contact line can
be unbounded in some circumstances (Concus & Finn 1969; Weislogel & Lichter 1998;
King, Ockendon & Ockendon 1999). In what follows, we consider smooth (differentiable
everywhere) wall perturbations with no sharp corners.

At low flow speeds, the motion of drops and bubbles in confined devices follows a
series of near-equilibrium configurations and thus the static problem discussed here can
also be used to provide insight into the effect of wall roughness on these problems.
Channel imperfections are known to have a significant effect on the set of observable
stable solutions for air fingers and bubbles propagating in a Hele-Shaw channel. This
effect has been seen with a cusp at the tip of a bubble/finger created by a needle (Hong
& Family 1988); a tiny bubble at the tip of a bubble/finger (Maxworthy 1986); anisotropy
by etching of the plates (Ben-Jacob et al. 1985; Dorsey & Martin 1987); and channel
occlusions (Hazel et al. 2013; Thompson, Juel & Hazel 2014). Wall roughness has also
been seen to affect the ‘tip-splitting’ effect seen by propagating interfaces (Tabeling,
Zocchi & Libchaber 1987; Franco-Gómez et al. 2016, 2018). It is unclear so far how the
wall roughness contributes to the selection of a particular set of solutions.

In this study, we consider a static liquid–vapour interface in a rectangular channel and
introduce imperfections to the upper and lower walls in the form of narrow ridges and
grooves running the length of the channel. We are interested in how the meniscus shape
changes due to the perturbations and, in particular, how the perturbations displace the
contact line (defined as the intersection of the meniscus with the channel walls). We
consider two classes of perturbations: those that change the volume of the channel, and
those that preserve it. A key result is that small-amplitude perturbations that change the
volume of the channel induce a change in the pressure difference across the meniscus, and
thus change the mean curvature of the meniscus. This change is a long-range effect that is
felt along the whole contact line.

In § 2 we present the governing nonlinear Young–Laplace equation and boundary
conditions. In § 2.1 we derive and solve a linear model to find the shape of the meniscus for
perturbations of small amplitude. The linearised problem shows that the change in mean
curvature of the meniscus (i.e. the change in pressure difference over the meniscus) due
to small perturbations is given by the Helmholtz equation. In § 3, we derive an explicit
expression for the change in pressure difference that is directly proportional to the integral
of the perturbations around the contact line, which corresponds to the change in channel
volume. We also solve for the fully nonlinear mean curvature of the meniscus numerically
using Surface Evolver (Brakke 1992).

We present results for both the linear and nonlinear models in § 4. We show that for
channel-volume-changing perturbations, the meniscus away from the local perturbation
matches onto a catenoid that must have the same constant mean curvature as the meniscus,
which can be worked out a priori from the boundary data. We also show that perturbations
that are offset from each other on the two walls – for example, forming weakly corrugated
channels – can be used to engineer patterns in the contact line because each perturbation
causes a deflection of both the upper and lower contact lines. The deflection mechanism
acts differently depending on whether the total perturbation is channel-volume-changing
or channel-volume-preserving. We conclude with a short discussion in § 5.

2. Model

Consider a static liquid–vapour interface having uniform mean curvature in a rectangular
channel with non-dimensional edge lengths 2L, 2W and 1 in the x, y and z directions,
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Geometric

perturbation

Vapour

Contact line

Contact angle

Liquid

z
y

r n

xx = 0
x = x0

x = 2L
y = –W

y =W

v

θ

φ

θ̃

Figure 1. A static liquid–vapour meniscus in a rectangular channel 0 ≤ x ≤ 2L, −W ≤ y ≤ W and − 1
2 +

B−( y) ≤ z ≤ 1
2 + B+( y). The shape of the meniscus is described using a cylindrical polar coordinate system

(r, θ, y) centred at (x, y, z) = (x0, 0, 0) where x0 is fixed by the volume of liquid in the channel. The meniscus is
located in the channel such that the unperturbed state has r = R = 1/(2 cos φ), with φ the solid–liquid contact
angle on the upper and lower walls. The solid–liquid contact angle on the side walls is π/2.

respectively; see figure 1. We assume that the channel is sufficiently small that
gravitational effects can be ignored, i.e. that the height of the horizontal channel is much
smaller than the capillary length scale

√
γLV/ρg, where γLV is the liquid–vapour surface

tension, ρ is the liquid density, and g is the acceleration due to gravity. The contact angle
between the liquid–vapour and solid–liquid interfaces on the upper and lower walls of the
channel is fixed to be φ, where 0 ≤ φ < π/2. We impose that the meniscus meets the
side walls at y = ±W normally, with contact angle π/2, so that in the absence of wall
perturbations, the interface takes the shape of an arc of a cylinder. To describe this, we
adopt cylindrical polar coordinates (r, θ, y), with r = 0 fixed at the centre of curvature
of the unperturbed meniscus. We define the maximum value of θ , which specifies the
contact-line location in the unperturbed state, by θ̃ = π/2 − φ (see figure 1). Then the
base state is given by r = R ≡ 1/(2 sin θ̃ ), for θ ∈ [−θ̃ , θ̃ ] and y ∈ [−W, W]. Cartesian
and polar coordinates are related by (x, y, z) = (x0 + r cos θ, y, r sin θ), where x0 is defined
by the volume of liquid VL in the channel, as

x0 = 2L − R
2

cos θ̃ − VL

2W
− R2θ̃ . (2.1)

We denote the dimensionless pressure of the liquid phase (scaled on surface tension over
channel depth) to be pL, relative to zero pressure in the gas phase, so that in the unperturbed
configuration pL = −1/R.

The upper (+) and lower (−) walls of the channel are then perturbed so that they are
described by z = ±1

2 + B±( y). The perturbations take the form of ridges and grooves
that could be created, for example, using a pulsed laser (Xing et al. 2014), or using
moulded fabrication with standard soft lithography techniques (Chung et al. 2008). We
do not assume contact-angle hysteresis, but we assume that surfaces are homogeneous
and smooth, allowing us to address interactions between the wall perturbations and the
meniscus at the microscopic level. We non-dimensionalise all surface tensions on the
liquid–vapour surface tension γLV so that the meniscus has unit surface tension.

We specify the interface location relative to the base state so that the surface of the
meniscus is described in terms of the unknown radial perturbation F( y, θ) and the angular
change in location of the contact lines on the upper and lower walls Φ±( y):

r = R + F( y, θ), θ ∈ [−θ̃ + Φ−( y), θ̃ + Φ+( y)], y ∈ [−W, W]. (2.2)
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The effect of ridges and grooves on menisci in channels

We measure the pressure difference across the meniscus as the liquid pressure minus the
gas pressure, where without loss of generality we assume that the gas pressure is zero. Thus
we write �p = −R−1 + ( pL)p, where ( pL)p is the change in pressure of the liquid phase
due to the channel perturbations. This is constrained by the requirement that the volume of
liquid VL does not change under any perturbation to the channel geometry. Then, defining
the unit normal n of the meniscus to point into the liquid phase, as shown in figure 1, the
equilibrium state is specified by the Young–Laplace equation, relating the uniform mean
curvature of the interface to the pressure difference across the meniscus �p as

�p = −∇ · n|r=R+F = − 1
Λ

+
(

(R + F)Fy

Λ

)
y
+ 1

R + F

(
Fθ

Λ

)
θ

, (2.3)

where Λ ≡
√

(R + F)2(1 + F2
y ) + F2

θ .
We solve the Young–Laplace equation (2.3) subject to the volume constraint and the

following boundary conditions. First, we constrain the contact line to lie on the perturbed
channel walls, so that

z = (R + F( y, θ)) sin θ = ±1
2 + B±( y) at θ = ±θ̃ + Φ±( y). (2.4)

Second, we impose a fixed contact angle φ through the geometrical argument that if v± are
unit normals to the upper and lower channel walls pointing out of the channel (as shown
in figure 1), then

n · v± = cos φ at θ = ±θ̃ + Φ±( y), where v± = ±−B′±( y) ŷ + ŷ√
1 + B′±( y)2

. (2.5)

Finally, the meniscus meets the side walls normally, so that

Fy(±W, θ) = 0. (2.6)

2.1. Linear model
We linearise the problem when wall perturbations are small relative to the channel depth
by writing B±( y) = ε b±( y), where ε is defined as the maximum amplitude of the
perturbation, and b±( y) = O(1) as ε → 0. We use the parametrisation of the interface
given in the nonlinear model (2.2), with the assumption that the perturbation to the radius
and the change in location of the contact lines are also O(ε), so that F( y, θ) = ε f ( y, θ)

and Φ±( y) = ε Θ±( y). Then the interface is parametrised as

r = R + ε f ( y, θ), θ ∈
[
−θ̃ + ε Θ−( y), θ̃ + ε Θ+( y)

]
, y ∈ [−W, W]. (2.7)

We assume that the change in the pressure difference due to the perturbation is also O(ε),
so that ( pL)p = εp and �p = −R−1 + εp.

Assuming that f ( y, θ) and all its derivatives are O(1) as ε → 0, after linearisation,
the leading-order approximation to the Young–Laplace equation (2.3) is the Helmholtz
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E.C. Johnstone, A.L. Hazel and O.E. Jensen

equation
1

R2 f + 1
R2 fθθ + fyy = p, y ∈ [−W, W], θ ∈ [−θ̃ , θ̃ ]. (2.8)

The boundary condition (2.4) constraining the contact line to lie on the upper and lower
channel walls becomes

f ( y, ±θ̃ ) sin θ̃ ± fθ ( y, ±θ̃ ) cos θ̃ = ±b±( y), (2.9)

whilst the leading-order approximation to boundary condition (2.5) is

fθ ( y, ±θ̃ ) − R Θ±( y) = 0. (2.10)

In deriving (2.10), the neglected O(ε2) terms include those involving the derivative of the
boundary data, ε2 b′±( y). These terms will formally become O(ε) if b′±( y) = O(ε−1); this
puts an additional constraint on the boundary data for the linearised model to be valid. In
particular, this constraint suggests that we cannot use a linearised model for very sharp
perturbations with large gradients regardless of their amplitude; this will be discussed in
§ 3.2. The final boundary condition (2.6) becomes

fy(±W, θ) = 0. (2.11)

The problem is closed with the condition that the volume of liquid VL is invariant with
respect to changes in channel volume. This leads to the condition∫ W

−W

∫ θ̃

−θ̃

f ( y, θ) dθ dy =
(

VL

2RW
+ θ̃

2 sin θ̃
− cos θ̃

2

)∫ W

−W
(b+( y) − b−( y)) dy. (2.12)

Finally, the linearised contact-line displacement on the upper and lower walls x±( y) is
found by Taylor expanding the solution for x = r cos θ at θ = ±θ̃ + ε Θ±( y):

x±( y) = x0 + R cos θ̃ + ε x±
p ( y) + O(ε2), x±

p ( y) = f ( y, ±θ̃ ) cos θ̃ ∓ fθ ( y, ±θ̃ ) sin θ̃ .

(2.13a,b)

For the specific case of zero contact angle (φ = 0), when the meniscus meets the walls
tangentially, there is no contribution to boundary condition (2.10) at O(ε). An expansion
to powers of O(ε2) is needed to obtain (2.10), as explained in Appendix A.

3. Methods

3.1. Pressure-volume relationship
We show that small-amplitude perturbations that change the volume of the channel must
cause the mean curvature of the meniscus to change. Noting the self-adjointness of the
Helmholtz operator and boundary conditions (2.8)–(2.11), we derive in Appendix B an
explicit expression for this O(ε) pressure difference at the meniscus, and find that it has a
similar dependence on the boundary data as the induced volume change,

p = 1

4WR2 sin(θ̃)

∫ W

−W
(b+( y) − b−( y)) dy. (3.1)

Thus in the linear problem with channel-volume-changing perturbations (for which∫ W
−W(b+( y) − b−( y)) dy /= 0), the forcing for the Helmholtz equation (2.8) can be

deduced a priori from the volume change encoded in the boundary data.
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The effect of ridges and grooves on menisci in channels

3.2. Solutions for Gaussian perturbations
We now restrict our attention to Gaussian perturbations of the form

B±( y) = a±ε exp(−( y − y±
c )2/s2), so b±( y) = a± exp(−( y − y±

c )2/s2), (3.2)

where y±
c and s control the location and width of the perturbation, respectively, and the

prefactor a±, which can take value +1 or −1 on either wall, determines the orientation of
the perturbation, i.e. whether it is a ridge or a groove. For the purposes of illustration,
we assume that the perturbation on the lower wall is a ridge so that a− = 1. Then
after fixing s, we consider two specific types of geometry: channel-volume-preserving
configurations with

∫ W
−W(b+( y) − b−( y)) dy = 0 (corresponding to a groove on the upper

wall); and channel-volume-changing configurations with
∫ W
−W(b+( y) − b−( y)) dy < 0

(corresponding to a ridge on the upper wall). The former preserve the pressure of the liquid
phase, whereas the latter, which decrease the volume of the channel, cause an increase in
the magnitude of the liquid pressure. If y±

c = 0, then the channel-volume-preserving and
channel-volume-changing configurations are mirror-antisymmetric and mirror-symmetric,
respectively, about z = 0.

We solve the full nonlinear problem to find the shape of the interface using the
open-source software Surface Evolver (Brakke 1992), which uses a gradient-descent
method to converge to a surface with minimum energy from a given initial guess and
subject to constraints to enforce the boundary conditions and the volume condition; for
details, see Appendix C. Meanwhile, we solve the linear problem (2.8)–(2.12) using
second-order-accurate finite differences; see Appendix D for more details. As seen in § 2.1,
the linear model can be expected to break down when b′±( y) = O(ε−1). For the Gaussian
boundary data (3.2), this occurs if s2 = O(ε), which limits how narrow the perturbation
can be.

3.3. Analytic solution for symmetric perturbations
For the special case of aligned perturbations (y±

c = 0), we can obtain an analytic solution
to the linear problem (2.8)–(2.12) via separation of variables, with a Fourier discretisation
across the width of the channel in the y direction because of the y dependence of
the boundary conditions on the upper and lower walls. Denoting mirror antisymmetric
(channel-volume-preserving) and mirror-symmetric (channel-volume-changing) solutions
by ‘MAS’ and ‘MS’ subscripts, respectively, the series solution is given by

f MAS
MS

( y, θ) = R2p +
∞∑

n=0

A
MAS
MS

n
(
eλnθ ∓ e−λnθ

)
cos

(nπy
W

)
, (3.3)

where the exponential coefficient λn is given by

λn =
√(

nπR
W

)2

− 1. (3.4)

Thus there is a critical value of n, specific to the contact angle (through 2R cos φ = 1) and
the width of the channel, at which the sum switches from having oscillatory dependence
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E.C. Johnstone, A.L. Hazel and O.E. Jensen

in θ to exponential dependence in θ . The coefficients A
MAS
MS

n are given by

A
MAS
MS

n = ±an(
sin θ̃ + λn cos θ̃

)
eλnθ̃ ∓

(
sin θ̃ − λn cos θ̃

)
e−λnθ̃

{
n � 0 (MAS),

n � 1 (MS),
(3.5)

aMAS
0 = 1

2W

∫ W

0
b−( y) dy, an = 1

W

∫ W

0
b−( y) cos

(nπy
W

)
dy, n � 1. (3.6)

The coefficient AMS
0 is found using the volume condition (2.12) to be

AMS
0 =

(
VL

2RW
+ θ̃

2 sin θ̃
− cos θ̃

2

)∫ W

−W
(b+( y) − b−( y)) dy − 4WR2θ̃ p

4W sin θ̃
. (3.7)

For the Gaussian boundary data (3.2), the coefficients of the convergent series are defined
by

an = s
√

π

2W
exp

(
−s2

4

(nπ

W

)2
)

Re
{

i erfi
(

− iW
s

− nπs
2W

)}
, n � 1. (3.8)

The function erfi(z) = −i erf(iz) is the imaginary error function so that for real u and v,
i erfi(−iu + v) = erf(u + iv).

Numerical solutions below are obtained by truncating (3.3) at n = nc such that terms
with coefficients smaller than 10−16 were discarded.

4. Results

We present results for the displacement of the static meniscus and the contact line induced
by Gaussian perturbations (3.2). We first assume that the perturbations are aligned so that
y±

c = 0.

4.1. Aligned perturbations
Figure 2 shows ‘baseline’ linear solutions f ( y, θ) for the two prototype channel-volume-
preserving and -changing configurations, together with displacement of the upper and
lower contact lines due to the perturbation, x±

p ( y) (as given in (2.13a,b)), computed using
the series solution (3.3). In the channel-volume-preserving case (figure 2a), the response
of the meniscus and contact line is localised around the perturbations in the y direction,
whereas in the channel-volume-changing case (figure 2b), the perturbations induce a
larger-amplitude response that is felt across the entire depth and width of the channel.
In the former case, the contact-line shape appears to mirror the curvature of the wall
perturbation, but it is smoother in the latter case. Thus a small ridge or groove placed in the
centre of the channel can cause non-local bending of the contact line through its impact
on the pressure field (3.1). Note that we can build new small-amplitude solutions as linear
combinations of the two solutions shown, and can therefore describe the behaviour of the
contact line as the perturbations are varied between the two configurations.

The effect of varying perturbation amplitude and width on the contact-line displacement
is presented in figure 3. Both volume-preserving (figure 3a) and volume-changing
(figure 3b,c) perturbations result in a local displacement of the contact line in the
centre of the channel that depends on the shape of the perturbations, with narrower
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The effect of ridges and grooves on menisci in channels
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Figure 2. The displacement of the upper and lower contact lines due to the perturbation x±
p ( y) (black solid

lines, left axis) and change in meniscus shape f ( y, θ) (heat map) due to Gaussian perturbations b±( y)
proportional to b( y) = exp(−y2/0.75) (red dashes, right axis), for a channel with half-width W = 5 and
contact angle φ = 15◦. As in figure 1, the liquid and vapour sides of the contact-line displacement are shown
with blue and white shading, respectively, for (a) channel-volume-preserving perturbation (b− = b+ = b); and
(b) channel-volume-changing perturbation (b− = −b+ = b). The heat maps denote the change in radius r due
to the perturbations, with green denoting no change in the meniscus location. Positive values of f show the
meniscus extending into the liquid phase.

or larger-amplitude perturbations eliciting a greater displacement. Linear and nonlinear
predictions of the upper contact-line displacement x+

p ( y) show good agreement for
perturbations that are approximately 1 % of the channel depth (figure 3a,b). (Numerical
evidence in figure 10 below suggests that the contact-line displacement increases like
log(1/s) for finite contact angle as the perturbation width s becomes very small, when
the linear model breaks down.) Larger perturbations, of approximately 10 % of channel
depth, are shown in figure 3(c) for the volume-changing case. Here a greater discrepancy
between linear and nonlinear predictions is evident, although the shape of the contact-line
perturbations at the edges of the channel is accurately described by the linear model.
A long-wave analysis for s � W shows that the solution in the far-field has a quadratic
dependence on y in the form fA( y, θ) = C1(θ) (W − |y|)2 + C2(θ). We substitute this
ansatz into the Helmholtz equation (2.8) and solve the resulting coupled ODEs for C1(θ)

and C2(θ) with modified ‘far-field’ boundary conditions. These are obtained by setting
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0

(×10–2)

(a)
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(c)

Figure 3. The displacement of the upper contact line in channels of half-width W = 5, for perturbations
with amplitude ε = 0.01 (a,b) and ε = 0.1 (c), for channel-volume-preserving perturbations (a) and
channel-volume-changing perturbations (b,c). The contact angle is φ = 85◦. Panels (a,b) show wall
perturbations of varying width, with darker colours indicating wider perturbations, with s2 varying from 0.75
(black), through 0.5 and 0.25, to 0.1 (light grey); (c) shows s2 = 0.75 only. Solid lines denote the displacement
calculated via the linear solution, i.e. x+

p ( y) from (2.13a,b), for all values of s; circles (thicker lines) denote the
nonlinear displacement (xcl − x0 − R cos θ̃ )/ε, where xcl is the contact-line data computed in Surface Evolver
for s2 � 0.25. Inset: the nonlinear lower contact-line displacement for volume-preserving perturbations, for
s2 = 0.75. The red dots in (c) denote the quadratic linear far-field solution (4.1), with C ≈ 0.18.

b±( y) = 0 in (2.9) since the amplitude of Gaussian perturbations b±( y) is negligibly small
for y ∼ W and |y − yc| � s. Then substituting the solution for fA( y, θ) in (2.13a,b) shows
that the approximation to the displacement of the contact line far from the perturbations is
given by

x̂+
p ( y; θ̃ ) ≈

(
p sin(θ̃ )

cos(θ̃) sin(θ̃ ) + θ̃

)
(W − |y|)2 + C, (4.1)

where the translational constant C cannot be found using the volume condition and instead
is found empirically by comparison with the value of the full solution (3.3) at y = ±W.
This linear ‘far-field solution’, which is valid when |y − yc| � s, is shown in figure 3(c)
and gives an excellent fit to the nonlinear data.

Recalling from (3.1) that p = O(W−1), the linear far-field solution (4.1) for
volume-changing perturbations suggests that if the channel is sufficiently wide, so that
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The effect of ridges and grooves on menisci in channels

0.05

–0.05

–0.10

0

–W W = 100

y

x

Figure 4. The nonlinear contact-line displacement for a channel of half-width W = 10, with contact angle φ =
45◦ and perturbations to the channel wall of amplitude ε = 0.01 and s2 = 1. The thick black solid line denotes
the nonlinear upper contact-line data computed in Surface Evolver, xcl. The red line denotes the quadratic
linear far-field solution (4.1), x0 + R cos θ̃ + ε x̂+

p ( y), with C ≈ 0.18. The blue dashes denote the arc of a circle
of radius Rd , where Rd is determined as part of the solution to the boundary-value problem described in
Appendix E with �p ≈ −1.4167 found from Surface Evolver.

W ∼ O(ε−1), then the far-field contact-line displacement could become O(1), violating
the small displacement assumption of the linear model. We therefore need to revisit the
far-field quadratic approximation (4.1), which should correspond to the arc of a circle
having curvature equivalent to that of a large, flat ‘pancake’ catenoid confined between
unperturbed plates having the same mean curvature, i.e. the same mean pressure difference
�p as the meniscus. The radius Rd of the circular arc that matches onto the contact line
is found by computing a catenoid with the same pressure difference �p, as evaluated
in Appendix E. Figure 4 shows how the computed far-field shape of the contact line is
captured well by both the linear far-field solution (4.1) and the circular arc computed from
the catenoid solution.

In summary, the pressure change induced by the net volume changes of the wall
perturbations generates curvature of the contact line away from the perturbations, whereas
other geometric features of the perturbations influence contact-line shapes locally. We
therefore expect that the same far-field behaviour should exist if the perturbations are not
aligned, as we shall test in the next section.

4.2. Non-aligned perturbations
We now consider perturbations that are not aligned, i.e. y±

c /= 0. We consider specifically
configurations of perturbations that are sufficiently far apart to be considered as isolated
perturbations.

We compute the non-aligned solutions to the linear model using second-order-accurate
central finite differences (Appendix D), with step sizes �y = 0.05 in the y direction
and �θ = 0.03 in the θ direction. Figure 5 shows solutions to the linear problem for
perturbations that have been separated so that b±( y) are centred at ±yc. The separation of
the channel-volume-preserving perturbations causes the contact line to bend away from
the side wall; this deflection of the upper and lower contact lines occurs due to the
presence of a perturbation on either the upper or lower wall. Isolated ridges and grooves
cause the contact lines to move towards the liquid and vapour phases, respectively. In
contrast, channel-volume-changing perturbations (figure 5c,d) induce non-local bending
of the contact line in the far-field, which can again be described using arcs of circles.

We wish to understand the deflection mechanism so that we may choose perturbations to
engineer specific contact-line shapes. In the channel-volume-preserving case (figure 5a,b),
let α be the gradient of the contact-line displacement in the centre of the channel, between
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Figure 5. The linear solution f ( y, θ) and upper contact-line displacement for channel-volume-preserving
(a,b) and channel-volume-changing (c,d) perturbations, for channel half-width W = 5 and contact angle
φ = 85◦. The upper and lower wall perturbations are given by B±( y) = 0.01 exp(( y − y±

c )2/0.25). In (a,c)
y±

c = ±3, while (b,d) show contact-line displacement x+
p for separations varying from y±

c = ±3 (black)
through ±(1.5, 1, 0.5) to y±

c = 0 (light grey). Solid lines denote the displacement calculated via the linear
solution x+

p ( y) from (2.13a,b); circles (thicker lines) denote the nonlinear displacement (xcl − x0 − R cos θ̃ )/ε,
where xcl is the upper contact-line data computed in Surface Evolver. The pink line in (b) is the line x = αy,
where the slope α is given in (4.2).
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The effect of ridges and grooves on menisci in channels

2 0.4 0.3 0.30

0.25

0.20

0.2

0.1

0 1 2 3 0.5 1.0

0.3

0.2

1

0 50 100 0 0.05

α

φ ε yc
+ s2

(a) (b) (c) (d)

Figure 6. The slopes α of the upper contact-line displacement x+
p ( y) in the centre of the channel for

channel-volume-preserving perturbations. (a) Varying contact angle 15◦ ≤ φ ≤ 85◦ with separation y+
c = 3,

perturbation width s = 0.5, and perturbation amplitude ε = 0.01. (b) Varying amplitude 0.001 ≤ ε ≤ 0.065
with y+

c = 3, s = 1 and φ = 85. (c) Varying separation 0 ≤ y±
c ≤ 3 with s = 0.5, ε = 0.01 and φ = 85.

(d) Varying square perturbation width 0.25 ≤ s2 ≤ 1 with y+
c = 3, φ = 85 and ε = 0.01. The solid lines denote

the values of α calculated using (4.2). The diamonds denote the numerical values of α calculated empirically
from the contact-line data.

the perturbations. For perturbations of sufficiently small amplitude, α is approximately
equal to the angle of deflection, i.e. the angle that the contact line makes with the
horizontal. We can obtain an approximation for α by considering the solution in the
neighbourhood of an isolated ridge or groove: consider the Helmholtz equation (2.8),
with zero pressure difference p (to obtain contact-line solutions with uniform gradient).
Then the problem for a single isolated ridge or groove perturbation b+( y) on the upper
wall, centred at some y = yc, will admit a solution of the Helmholtz equation with
f ( y, θ) = 0 for yc − y � s and f ( y, θ) ≈ α( y − yc) cos θ for y − yc � s. Exploiting the
self-adjointness of the Helmholtz operator and boundary conditions using the method
given in Appendix B with a test function g(θ) = cos θ , we obtain

α ≈ 1
R2

1

cos θ̃ sin θ̃ + θ̃

∫ ∞

−∞
b+( y) dy, (4.2)

where the integral is taken over the full width of the isolated perturbation b+. Thus we
anticipate that for Gaussian perturbations, the parameters that most affect the deflection
will be the volume of the perturbation and the contact angle. While the linear theory
allows for an O(ε) contact-line displacement in the x direction, the displacement εαy of
the deflected solution can in principle become O(1) in a sufficiently wide channel (if
y − yc = O(ε−1)); thus the solution can in principle be matched to a straight meniscus
for which the x displacement is larger. Figure 6 shows the values of α found empirically,
together with the theoretical prediction (4.2), for varying perturbation separation, width,
amplitude and contact angle. There is excellent agreement with the theoretical predictions
except for small y+

c , i.e. as long as the perturbations are not too close together; this is
expected because it violates the assumption that the perturbations can be treated as isolated
ridges and grooves.

4.3. Weakly corrugated channels
Based on the discussion above, we now consider the linear model for channels with a
series of small-amplitude ridges and grooves on the upper wall to form weakly corrugated
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Figure 7. The upper and lower contact lines (left axis, solid black line), together with the perturbations (right
axis, dashed red line) for (a) a channel-volume-preserving configuration and (b) a channel-volume-changing
configuration in a channel of half-width W = 20. The perturbations are defined by (4.3), with ridges on the
lower wall at y = −14, 2, grooves on the lower wall at y = −6, 10, ridges on the upper wall at y = −2, 14 and
grooves on the upper wall at y = −10, 6. The perturbation in (b) has an extra ridge on the lower wall at y = 0
to make it channel-volume changing. All perturbations have width s2 = 0.1 and the contact angle is φ = 85◦.

channel walls. Thus we consider perturbations of the form

b±( y) =
K∑

k=0

a±
k exp(−( y − y±

ck
)2/s2), (4.3)

where y±
ck

are the locations of the ridges and grooves on the upper and lower walls,
and a±

k = ±1 depending on whether ridges or grooves are chosen. We assume that the
ridges and grooves are spaced sufficiently so that we can treat each perturbation as a
single isolated ridge or groove that causes deflection of the contact line in the way
described above, so that we can predict the deflection angle due to each ridge and groove
using (4.2). Figure 7 shows the upper and lower contact-line displacements x±

p ( y) for
a weakly corrugated channel with alternating ridges and grooves on each wall so that
the contact lines take the shape of a letter ‘M’. The contact-line displacement for the
channel-volume-preserving configuration is shown in figure 7(a); this solution describes a
meniscus with zero induced mean curvature, thus the contact-line displacement is flat in
the far-field and has sections of varying slope. Because each perturbation can be treated in
isolation, the gradient of each slope is described by (4.2). Again, ridges push the contact
line towards the liquid phase, and grooves allow the contact line to move towards the
vapour phase. The contact-line slope varies smoothly, and again the shape of the contact
line is affected by an obstacle on either wall so that it takes, for example, a ridge/groove
on the lower wall followed by a ridge/groove on the upper wall to reverse the gradient of
the contact line.

In figure 7(b), we consider the same series of grooves and ridges and then add an extra
ridge on the lower wall at y = 0 so that the configuration is now channel-volume-changing.
Qualitatively, the shape is unchanged but the change in mean curvature is now non-zero.
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The effect of ridges and grooves on menisci in channels

Thus the ‘sections’ of contact line between each ridge and groove are now locally
parabolic; each parabola is a local approximation to the arc of a circle that forms the
contact line of a catenoid with the same mean curvature as the static meniscus.

There are, of course, a plethora of possible smoothly-varying contact-line shapes
that can be made using channel-volume-changing/preserving configurations, for
small-amplitude perturbations (up to approximately 10 % of the channel height). It is
possible to specify these shapes a priori using just the boundary data, using either (4.2)
for the required gradients in the channel-volume-preserving case, or (3.1) to deduce the
pressure of the catenoid with circular contact line that matches onto the parabolas in the
channel-volume-changing case, together with the known direction in which the contact
line will move for either ridges or grooves.

5. Discussion

In this study, we have quantified the displacement of the contact line of a static meniscus
in a rectangular channel arising from the presence of isolated ridges and grooves imposed
on the channel walls. We have shown that small-amplitude perturbations that change
the channel volume induce a change in the mean curvature of the meniscus, inducing
long-range curvature of the contact line, via (3.1). For very wide channels, this curvature
matches onto the arc of a catenoid whose radius is found by matching the pressure
differences. Meanwhile, small-amplitude isolated non-aligned perturbations that do not
change the channel volume generate a contact-line shape that is approximately piecewise
linear. We derived an approximation to the deflection angle between adjacent linear
segments (4.2), showing a dependence on the volume of the groove or ridge. This makes
it possible in principle to engineer contact-line shapes by choosing the location and order
of the ridges and grooves.

We validated predictions of the linearised model against fully nonlinear solutions
obtained using Surface Evolver. However it remains unclear at present how the closed-form
results (3.1) and (4.2), derived using the self-adjointness of the Helmholtz equation, might
be extended to the nonlinear regime. While these predictions of the induced pressure and
deflection angle show dependence on the volume of ridges or grooves, they mask more
subtle dependence on the precise shape of the perturbations. For example, when there is
no induced pressure change, the contact-line displacement near a ridge or groove mirrors
approximately the curvature of the wall shape (figure 2a), which is a bounded function for
the Gaussian wall perturbations chosen here. Sharper perturbations, having derivatives
varying on very short length scales, can be expected to lead to dramatically different
outcomes, as outlined in Appendix F. We avoided these extreme cases here by ensuring
that b±( y) is analytic and not too narrow.

A natural extension of this study is to consider perturbations with curvature in
two directions (such as isolated bumps). These too can be expected to generate
long-range deflections of the contact line. However, nonlinear effects (associated with
large amplitudes or sharp asperities) will likely need to be taken into account in order
to capture effects such as contact-line hysteresis, arising as the contact line is moved
slowly backwards and forwards over the bump. Similarly, the approach taken here could
equally be extended to consider the sensitivity of the meniscus to changes in the contact
angle arising from coating portions of the channel wall with suitable chemicals. In
practice, however, a continuous gradient of contact angle may be much more difficult to
achieve experimentally than smoothly-varying perturbations, which may appear naturally
in an industrial or biological setting. The present study considered perturbing a ‘straight’
meniscus with zero Gaussian curvature; a further generalisation that merits investigation is
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E.C. Johnstone, A.L. Hazel and O.E. Jensen

to consider a curved base state, to accommodate contact angles at lateral walls that deviate
from π/2.

The solution structures identified here will support future studies of gas/liquid interfaces
moving at low capillary numbers through domains having isolated geometric features, be
these engineered in order to achieve a specific outcome or naturally occurring roughness.
We have shown that even when these features are smooth, isolated and of small amplitude,
significant long-range deflections of the meniscus are possible.
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Appendix A. Linearised problem for zero contact angle

When φ = 0, the linearised boundary condition (2.10) vanishes, requiring expansion up to
O(ε2). We write the interface location as

r = R + ε f1( y, θ) + ε2 f2( y, θ) + O(ε3), (A1)

θ ∈
[
−θ̃ + ε Θ1−( y) + ε2 Θ2−( y), θ̃ + ε Θ1+( y) + ε2 Θ2+( y)

]
,

where R = 1
2 . The pressure difference �p is assumed to be �p = −R−1 + εp1 + ε2p2 + · · · .

After linearising the Young–Laplace equation (2.3), the O(ε) expression gives the equation
for f1 as

1
R2 f1 + 1

R2 f1θθ + f1yy = p1. (A2)

Similarly, the O(ε) terms in the linearisation of boundary conditions (2.4) and (2.6) give
the boundary conditions on f1 as

f1
(

y, ±π

2

)
= b±( y), f1y(±W, θ) = 0. (A3a,b)

The equation relating the change in meniscus shape f ( y, θ), to the contact-line location
Θ1±( y), can be found at O(ε2):

f1θ

(
y, ±π

2

)
= R Θ1±( y). (A4)

Therefore we recover exactly the conditions (2.9) and (2.10) with φ = 0. The volume
constraint (2.12) and independent pressure condition (3.1) remain the same.

Appendix B. The pressure in the linear problem

For the linearised problem, we can derive an independent equation for the pressure by
using the fact that the Helmholtz operator is self-adjoint. Consider the linear problem
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The effect of ridges and grooves on menisci in channels

(2.8)–(2.12) and a smooth, twice-differentiable test function g(θ) : [−θ̃ , θ̃ ] → R, such that

R−2[g′′ + g] = a ∈ R, g(±θ̃ ) = γ±, g′(±θ̃ ) = ζ±. (B1a–c)

We multiply the Helmholtz equation (2.8) by g, and then integrate over the domain D =
[−θ̃ , θ̃] × [−W, W]. Then, defining ∇̃ = (∂y, R−1∂θ ), we obtain∫

D
af + ∇̃ · (g∇̃f − f ∇̃g) dA =

∫
D

gp dA. (B2)

Rewriting the divergence terms on the left-hand side as integrals over closed curves, we
then integrate and apply the boundary conditions at the side walls, (2.11), and the boundary
conditions on g to give∫

D
af dA + R−2

∫ W

−W
[−γ− fθ ( y, −θ̃ ) + ζ− f ( y, −θ̃ ) + γ+ fθ ( y, θ̃ ) − ζ+ f ( y, θ̃ )] dy

=
∫

D
gp dA. (B3)

We now pick a test function g(θ) = cos θ (so that a = 0) and apply the boundary
conditions (2.9) on f , which leads to an independent equation for the pressure:

p = 1

4WR2 sin(θ̃)

∫ W

−W
[b+( y) − b−( y)] dy. (B4)

We also use this method to derive an approximation to the deflection angle α as given
in (4.2). To derive this relationship, we again use a test function g(θ) = cos θ , but we
take ‘far-field’ boundary conditions across an isolated wall perturbation of fy → 0 for
( y − yc)/s → −∞, and fy → α cos θ for ( y − yc)/s → ∞.

Appendix C. Solving the nonlinear problem with Surface Evolver

We implement the nonlinear problem using Surface Evolver (Brakke 1992), which uses
a gradient-descent method to iterate towards a surface of minimum energy. The energy
of the triangulated surface is defined as a scalar function of all the vertex coordinates.
The iterative process forces the vertices into a configuration that is closer to an energy
minimum, subject to any global constraints on the surface or local constraints on the
vertices. For the problem outlined in § 2, the only force acting on the liquid–vapour
interface is surface tension, thus we minimise the surface energy of the meniscus. The
constraints are the boundary conditions (2.4)–(2.6) together with the volume constraint.

The boundary conditions on the upper and lower channel walls, (2.5) and (2.6), are
implemented by fixing the energy of the channel walls. We define the (non-dimensional)
surface tension due to the presence of the solid wall as γS = γSL/γLV − γSV/γLV , where
γSL and γSV are solid–liquid and solid–vapour surface tensions. Then if αw is the contact
angle at the solid–liquid and liquid–vapour interface, by Young’s equation, γS = − cos αw,
and the wall energy is

Ewall =
∫∫

wall
− cos αw dS. (C1)

Thus to specify the boundary conditions (2.5) and (2.6), we fix the wall energies by
imposing contact angles αw = φ on the upper and lower walls at z = ±1/2 + B±( y), and
αw = π/2 on the side walls at y = ±W (so that the energy of the side walls is zero).
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E.C. Johnstone, A.L. Hazel and O.E. Jensen

In practice, for computational efficiency, only the liquid–vapour interface is triangulated
and refined. Then the wall energy integral (C1) for the upper and lower walls is rewritten
as a line integral using Stokes’ theorem: if w = (wx, wy, wz) is such that (∇ × w) · v± =
− cos(φ) (where again v± is the unit outward normal to the upper and lower channel
walls), then defining ∂wall as the boundary of the wall, the wall energy is

Ewall =
∮

∂wall

w · dr. (C2)

For the upper and lower walls described by z = ±1/2 + B±( y), we can choose, for
example, wx = wz = 0 and wy = −x cos φ

√
1 + B±( y)2. The integral around the closed

curve is implemented internally by Surface Evolver along the edges specified by the user,
with their orientation defined such that the unit normal is outward-pointing.

Boundary condition (2.4) is imposed by constraining the contact-line vertices to lie on
the upper wall of the channel. This is a local condition on each vertex.

The fixed volume of liquid VL is handled in Surface Evolver as a global constraint on
the possible energy configurations that the surface can take; that is, it removes one degree
of freedom from the problem.

The mesh refinement is handled by Surface Evolver using a basic subdivision; we also
equiangulate the mesh after each iteration. We converge to an energy minimum using the
following process.

(i) Iterate on a fixed mesh until the solution is accurate to a specified tolerance.
(ii) Refine the mesh and check the difference between the energy on the new mesh and

the old mesh. While the difference is greater than a specified tolerance, repeat step
(i).

We use a tolerance of 10−6 for the accuracy of the solution on each mesh and the
energy difference between meshes. We ensure that a global minimum has been reached
by using a second-order gradient-descent method to check for positive eigenvalues near
the equilibrium.

Appendix D. Numerical solution of the linear problem

We solve the linear problem (2.8)–(2.12) with Gaussian boundary data b±( y) =
± exp(−( y − y±

c )2/s2) in a rectangular domain −W ≤ y ≤ W, −θ̃ ≤ θ ≤ θ̃ . For general
y±

c , we integrate the Helmholtz equation (2.8) using second-order-accurate central finite
differences with step lengths �y and �θ in the y and θ directions, respectively. We denote
the value of the solution f at y = k�y, θ = j�k by f j

k for 0 ≤ k ≤ M + 1, 0 ≤ j ≤ N + 1,
so that y = W is approximated by (M + 1)�y and θ = θ̃ is approximated by (N + 1)�θ .
We discretise the Helmholtz equation (2.8) on the interior of the grid as

1
�y2 f j

k+1 + 1
�y2 f j

k−1 + 1
�θ2R2 f j+1

k + 1
�θ2R2 f j−1

k +
(

1
R2 − 2

�θ2R2 − 2
�y2

)
f j
k = p,

(1 ≤ k ≤ M, 1 ≤ j ≤ N). (D1)

We use the boundary conditions (2.9) and (2.10) to show that

2�θ sin(θN+1) f N+1
k − 2�θ b+( yk) + (3f N+1

k − 4f N
k + f N−1

k ) cos(θN+1) = 0, (D2)

2�θ sin(θ0) f 0
k + 2�θ b−( yk) + (3f 0

k − 4f 1
k + f 2

k ) cos(θ0) = 0; (D3)
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The effect of ridges and grooves on menisci in channels

meanwhile, the Neumann boundary conditions (2.11) give

− 3f j
0 + 4f j

1 − f j
2 = 0, 3f j

M+1 − 4f j
M + f j

M−1 = 0 for 1 ≤ j ≤ N. (D4a,b)

We then obtain a system of (N + 1)(M + 1) equations that we solve subject to the volume
constraint (2.12), which we discretise using Simpson’s rule.

The discretised system is solved using a direct solver that takes advantage of the sparsity
in the matrix structure. The grid size is chosen so that the solution to the discretised finite
difference system at each grid point is accurate to three decimal places compared to the
truncated analytical series solution, which is known at each grid point to high accuracy
(truncated terms had size O(10−16), see § 3.3).

Appendix E. The catenoid problem: governing equations and solution

Consider a catenoid with solid–liquid contact angle 0 ≤ φ < π/2 in a rectangular
channel. Note that we use the term ‘catenoid’ here to describe the general shape of
the interface as an ‘inverted droplet’; however, it need not be a surface of zero mean
curvature. The catenoid interface is described by arc-angle coordinates (r(t), z(t), θ(t))
for −t0 ≤ t ≤ t0 and is axisymmetric with respect to the azimuthal angle ϕ in cylindrical
polar coordinates (r, ϕ, z). We take t = 0 to be at z = 0 as shown in figure 8 so
that (r(0), z(0), θ(0)) = (r0, 0, π/2). Meanwhile, the channel walls are at t = ±t0 so
that (r(t0), z(t0), θ(t0)) = (Rd, 1/2, φ) and (r(−t0), z(−t0), θ(−t0)) = (Rd, −1/2, π −
φ). The catenoid is symmetric about z = 0, therefore without loss of generality we can
consider the interface from 0 ≤ t ≤ t0. Then r and z depend implicitly on t as

dr
dt

= cos θ,
dz
dt

= sin θ, 0 ≤ t ≤ t0, (E1a,b)

r(0) = r0, r(t0) = Rd, z(0) = 0, z(t0) = 1
2 . (E2a–d)

The unit normal to the interface pointing into the vapour phase at ϕ = const. is given by
n̂ = sin θ r̂ − cos θ ẑ. Thus the Young–Laplace equation is

�p = ∇ · n̂ = cos θ
∂θ

∂r
+ sin θ

r
+ sin θ

∂θ

∂z
= dθ

dt
+ sin θ

r
, (E3)

so that the final equation in the system is

dθ

dt
= �p − sin θ

r
, 0 ≤ t ≤ t0, (E4)

θ(0) = π

2
, θ(t0) = φ. (E5a,b)

The ODEs (E1) and (E4), together with the boundary conditions, form a boundary-value
problem for the arc-angle components r, z, θ .

A large-radius asymptotic solution (r0 � 1) to this system can be found by writing

r(t) = r0 + r1(t) + r2(t)
r0

+ · · · , θ(t) = θ0(t) + θ1(t)
r0

+ · · · , (E6a,b)

z(t) = z0(t) + z1(t)
r0

+ · · · , �p = (�p)0 + (�p)1

r0
+ · · · , (E7a,b)

t0 = L0 + 1
r0

L1 + · · · . (E8)
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E.C. Johnstone, A.L. Hazel and O.E. Jensen

Vapour Liquid

Contact line

Contact angle
t = 0

z = 1/2

z = –1/2

t = –t0
r = Rd

r = r0

z
y

x

φ

ϕ

θ

Figure 8. A catenoid in a rectangular channel with height − 1
2 ≤ z ≤ 1

2 and solid–liquid contact angle φ.

Solving the leading-order problem, we find from the leading-order approximation (θ0 =
(�p)0t + π/2, z0 = (sin(�p)0t))/(�p)0) that the pressure difference across the catenoid
is

(�p)0 = −2 cos φ, (E9)

which is consistent with the pressure difference of the unperturbed static liquid–vapour
meniscus in the rectangular channel, while the leading-order approximation to the catenoid
radius and the endpoint of the curve t0 is

r1(t) = cos((�p)0t)
(�p)0

− 1
(�p)0

, L0 = 2φ − π

2
. (E10a,b)

Solving the O(r−1
0 ) problem, we find that

(�p)1 = sin θ̃ cos θ̃ + θ̃

2 sin θ̃
. (E11)

Thus, eliminating r0 from truncated expansions for r(t0) and �p, the expression

Rd ≈ (�p)1

�p − (�p)0
+ r1(L0) (E12)

gives the large-radius approximation for the catenoid for any given �p.
We can also solve for catenoids with smaller radii numerically. First, we eliminate t

to obtain a nonlinear boundary-value problem where the unknown radius Rd is to be
determined as part of the solution for given �p and φ:

dθ

dz
= �p

sin θ
− 1

r
,

dr
dz

= cos θ

sin θ
, (E13a,b)

r
(

1
2

)
= Rd, θ(0) = π

2
, θ

(
1
2

)
= φ. (E13c–e)

We solve this problem numerically using the MATLAB routine ‘bvp4c’ (Kierzenka &
Shampine 2001), thus for any static meniscus with a given pressure difference (mean
curvature) and contact angle, we can find the radius Rd of the circular contact line of
the catenoid that has the same pressure difference (mean curvature). The relationship
between pressure difference and catenoid radius is shown in figure 9. It matches closely
the asymptote (E12) for Rd � 1.
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The effect of ridges and grooves on menisci in channels

–1.4 –1.2 –1.0 –0.8 –0.6 –0.4
0

5

Rd

�p

10

15

Figure 9. The maximum radius Rd of a catenoid for varying pressure difference �p, for a contact angle φ =
45◦. The solid line denotes the numerical solution for Rd . The dashed line denotes the asymptotic solution
(E12). The location of the asymptote is at �p = −2 cos(π/4) ≈ −1.414.

The large-radius catenoid solution describes the curved meniscus shape (4.1) far from
the wall perturbation, as we now demonstrate. The circular contact line is described locally
by a parabola. To see this, take a catenoid with a contact line of radius Rd centred on x =
x0, y = W. Its contact line lies along (x − x0)

2 + ( y − W)2 = R2
d. Because the solution is

translationally invariant, x0 may be chosen such that the catenoid passes through x = 0,
y = yc. When W � Rd and the centre of the catenoid lies in x > 0, we may describe the
base of the contact line using

x = x0 −
√

R2
d − (W − y)2 (E14a)

≈ x0 − Rd

(
1 − (W − y)2

2R2
d

+ · · ·
)

≈ C0 + 1
2Rd

(W − y)2, (E14b)

with C0 a constant. Therefore the contact-line displacement can be matched to (4.1) by
choosing

εp = cos θ̃ sin θ̃ + θ̃

2Rd sin θ̃
= (�p)1

Rd
, (E15)

and therefore approximates the contact line in yc < y ≤ W when |y − yc| � s. This
pressure–radius relationship is consistent with the leading-order relationship found via
the asymptotic expansion (E11), with r0 ≈ Rd.

We can then assess the limit W ∼ ε−1, for which the linearisation approximation of
§ 2.1 formally breaks down. Recall that the contact-line displacement εx±

p is O(εpW2)

with p = O(1/W) (from (3.1)), so that the contact-line displacement is O(1), and p =
O(ε) for W ∼ ε−1. However, the contact line retains a radius of curvature that is
large compared to W (Rd = O(1/ε2), from (E12) with �p − (�p)0 = εp), allowing the
parabolic approximation (E14) to be used. Thus the parabolic description (4.1) remains
appropriate in this limit (figure 4), because of the structure of the catenoid solution. In
contrast, larger-amplitude wall perturbations will cause Rd to fall towards the size of W,
pushing the contact line towards a more circular shape away from perturbations.
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E.C. Johnstone, A.L. Hazel and O.E. Jensen

10–3 10–2 10–1

s

y

100
–0.10

–0.10

–0.05

–0.05

xp
+ (0)

xp
+ (y)

0

0–W W = 2

0
(a)

(b)

Figure 10. (a) The upper contact-line displacement x̂+
p ( y) for a channel-volume-preserving Gaussian

perturbation B±( y) = 0.01 exp(−y2/s2), with s2 taking values 0.0025, 0.005, 0.0075, 0.01, 0.025, 0.05, 0.075,
0.1, 0.25 and 0.5. The black lines denote the linear solution, computed using the series solution (3.3), while the
coloured dots denote the Surface Evolver solution. The contact angle is φ = 85◦, and the channel half-width is
W = 2. (b) The upper contact-line displacement at y = 0, x̂+

p (0), with a logarithmic scale on the x axis (values
of s). The crosses denote the values of x̂+

p (0) computed using the Surface Evolver solution; the circles are the
corresponding values for the linear solution. The dashed line is x+

p (0) = 0.0128 log s − 0.0057.

Appendix F. Sharp ridges and grooves

It is well known that a sharp wedge or groove can drive large contact-line displacements
(Concus & Finn 1969), and so far we have restricted attention to Gaussian perturbations
(3.2) having width s no smaller than O(ε1/2), where ε is the wall-perturbation amplitude.

We now examine empirically what happens to the contact-line solution for the
Gaussian perturbations b±( y) = exp(−y2/s2) with s → 0. Figure 10(a) shows the upper
contact-line solutions for a channel-volume-preserving perturbation with decreasing s2,
with the narrowest computed perturbation having s2 = 0.0025 in a channel of half-width
W = 2. Linear solutions computed using the series solution (3.3) are compared to
Surface Evolver solutions, which are converged to an accuracy of 10−8 using the
process outlined in Appendix C. The amplitude of the contact-line displacement increases
as the perturbations become narrower; the linear model underpredicts the nonlinear
Surface Evolver solution, indicating that nonlinear effects become important as the
perturbations become sharper, particularly once s2 approaches ε = 0.01. We also note that
the far-field solution does not quite have zero curvature (as the linear model predicts for
a channel-volume-preserving perturbation); this again is a nonlinear effect. Plotting the
maximum displacement of the contact line at y = 0 (figure 10b) shows that the amplitude
of the displacement scales like log(1/s), suggesting that blowup may be possible even for
analytic boundary forcing.

A more extreme response can be expected for smaller contact angles and less smooth
forcing. Consider the case in which the ridge or groove has small amplitude and narrower
width (not necessarily Gaussian, but effectively satisfying s2 � ε). More specifically,
setting s to zero, suppose that the lower wall shape (b−), say, has a discontinuity in a
derivative at y = 0, such that b−( y) = 0 for y < 0, and b−( y) = yγ for y > 0. Then γ = 0
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The effect of ridges and grooves on menisci in channels

corresponds to a step in b−, γ = 1 corresponds to a corner (a discontinuity in slope) and
γ = 2 corresponds to a jump in the curvature of the wall. The linearised curvature of the
nearby gas–liquid interface, described in general by the Helmholtz equation (2.8), can be
expected to be approximated in the neighbourhood of the discontinuity by ∇2f ≈ 0. In the
fully wetting case, for example, with θ̃ = π/2, b− imposes f along the wall (θ = −π/2)
via (2.9), and the wall normal derivative fn determines the contact-line displacement via
(2.13a,b). Introduce polar coordinates (�, ϑ) centred on y = 0, such that ϑ = 0 (ϑ = π)
lies along the wall for y > 0 (y < 0), and consider first the case of a step (γ = 0). Then
f (�, ϑ) = −(1 − ϑ/π) provides a local solution to Laplace’s equation subject to the
forcing condition b−( y) = H( y), where H is a Heaviside function. The corresponding
wall normal derivative fn is then proportional to 1/y, indicating that the contact line will be
displaced in opposite directions on either side of a step. Further cases follow by integrating
with respect to y, so that fn ∝ log |y| for γ = 1 (the contact line will be displaced along
the axis of a corner) and fn ∝ y log |y| − y for γ = 2. These approximate solutions suggest
that a very sharp step or a corner in wall shape, even if smoothed over a very short length
scale s, will cause substantial deflection of the contact line (violating the linearisation
approximation), while a jump in wall curvature will bend the contact line sufficiently for
it to have infinite slope with respect to y, while remaining continuous.

In summary, and as indicated by figure 10, nonlinear effects will have a leading-order
role close to the ridge or groove whenever the wall shape is sufficiently sharp.
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Appendix

2.A Towards a nonlinear pressure-volume relation-

ship

One question that we did not address in the above paper was whether the relationship

between the change in channel volume and the change in pressure difference over the

meniscus holds in the general nonlinear case, i.e. for a ridge of any amplitude. Here we

formulate the question in variational terms although we do not offer a definitive answer.

Let S∗
δ be a channel described in Cartesian coordinates (x, y, z). Let the cross-

section of the channel at x = x0 be Dδ(x0). Denote the boundary of this cross section,

which is the walls of the channel at x = x0, by ∂Dδ
(x0). The cross-section and its

boundary are then defined parametrically as

Dδ(x0) = {r̂ : r̂ = r̂Dδ
(x0; y, z) = (x0, y, z)}, (2.A.1)

∂Dδ
(x0) = {r̂ : r̂ = r̂∂Dδ

(x0; t) = (x0, y∂Dδ
(x0; t), z∂Dδ

(x0; t)), t ∈ [0, 1]}. (2.A.2)

At a fixed x = x0, we find the cross-sectional area of the channel, A∗
δ . Firstly,∫∫

Dδ(x0)

dy dz =

∫∫

Dδ(x0)

1

2
∇ · (y, z) dy dz (2.A.3)

=

∫

∂Dδ(x0)

1

2
(y dz − z dy) (2.A.4)

using the two-dimensional divergence theorem with outward-facing unit normal vectors

to the boundary ∂Dδ(x0). Then using the parametrisation of the boundary (2.A.2), the

cross-sectional area is found to be

A∗
δ(x0) =

∫∫

Dδ(x0)

dy dz =
1

2

∫ 1

t=0

(
z′∂Dδ

(x0; t)y∂Dδ
(x0; t)− y′∂Dδ

(x0; t)z∂Dδ
(x0; t)

)
dt,

(2.A.5)

53
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where prime denotes derivative with respect to t. Thus, the volume of the channel S∗
δ

is given by

V ∗
δ =

∫ L

x=−L

A∗
δ(x) dx, (2.A.6)

where 2L is the length of the channel.

Now let Sδ be a free surface of minimum energy, which is in contact with the

channel S∗
δ . We define the surface parametrically so that

Sδ =
{
r̂ : r̂ = r̂Sδ

(y, z) =
(
xSδ(y, z), y, z

)}
. (2.A.7)

Let the contact line Σδ be defined as the intersection of the free surface Sδ and the

channel walls S∗
δ . Then the contact line is defined parametrically by

Σδ =
{
r̂ : r̂ = r̂Σδ

(t) =
(
xSδ

(
yΣδ

(t), zΣδ
(t)
)
, yΣδ

(t), zΣδ
(t)
)
, t ∈ [0, 1]

}
. (2.A.8)

The energy of the free surface ESδ is given by its area, which is defined as

ESδ =

∫∫

σδ

∥∥∥∥
∂r̂Sδ

∂y
× ∂r̂Sδ

∂z

∥∥∥∥ dy dz. (2.A.9)

The domain of integration σδ is the region in the (y, z) plane that corresponds with

the surface Sδ, i.e. it is bounded by the projection of the contact line Σδ onto two-

dimensional space. After applying the principle of virtual work, the first variation

of energy E1
Sδ

with respect to arbitrary displacement functions ξ(y, z), η(y, z) in the

normal and tangent directions to the free surface respectively is given by (Finn, 2012):

E1
Sδ

=

∫∫

σδ

ξ(y, z)(−2Hδ + λδ)

∥∥∥∥
∂r̂Sδ

∂x
× ∂r̂Sδ

∂y

∥∥∥∥ dy dz

+

∫ 1

t=0

η(yΣδ
(t), zΣδ

(t)) ∥r̂′
Σδ
(t)∥ dt, (2.A.10)

where Hδ is the mean curvature of the free surface Sδ and λδ is the Lagrange multiplier

for the constraint imposed that the volume of fluid in the channel is constant. The

free surface Sδ is a surface of minimum energy and therefore we solve for E1
Sδ

= 0,

which gives (Finn, 2012) λδ = 2Hδ and

∫ 1

t=0

η(yΣδ
(t), zΣδ

(t)) ∥r̂′
Σδ
(t)∥ dt = 0. (2.A.11)

Now assume that the channel S∗
δ differs slightly in geometry from some other chan-

nel S∗. We linearise back to this geometry. So,
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• on the free surface Sδ,

r̂Sδ(y, z) = r̂S(y, z) + δr̂Sp(y, z),

=
(
xS(y, z), y, z

)
+ δ
(
xSp(y, z), y, z

)
, (2.A.12)

• on the contact line,

r̂Σδ
(t) = r̂Σ(t) + δr̂Σp(t),

=
(
xΣ(t), yΣ(t), zS(xΣ(t), yΣ(t))

)
+ δ
(
xSp(yΣp(t), zΣp(t)), yΣp(t), zΣp(t)

)
,

(2.A.13)

• on the channel walls, at x = x0,

r̂∂Dδ
(x0; t) = r̂∂D(x0; t) + δr̂∂Dp

(x0; t),

=
(
x0, y∂D(x0; t), z∂D(x0; t)

)
+ δ
(
x0, y∂Dp

(x0; t), z∂Dp
(x0; t)

)
.

(2.A.14)

So y∂Dp
(x0; t), z∂Dp

(x0; t) is the perturbation we apply to the channel walls at

x = x0.

• the mean curvature and Lagrange multipler are linearised;

Hδ = H + δHp; λδ = λ+ δλp. (2.A.15)

Then the first variation of energy is given by

E1
Sδ

=

∫∫

σ

ξ(y, z)(−2H + λ)

∥∥∥∥
∂r̂S

∂y
× ∂r̂S

∂z

∥∥∥∥ dy dz

+

∫ 1

t=0

η(yΣ(t), zΣ(t)) ∥r̂′
Σ(t)∥ dt

+ δ

∫∫

σ

ξ(y, z)(−2Hp + λp)

∥∥∥∥
∂r̂S

∂y
× ∂r̂S

∂z

∥∥∥∥ dydz

+ δ

∫∫

σ

ξ(y, z)(−2H + λ)

(∥∥∥∥
∂r̂Sp

∂y
× ∂r̂S

∂z

∥∥∥∥+
∥∥∥∥
∂r̂S

∂y
× ∂r̂Sp

∂z

∥∥∥∥
)

dy dz

+ δ

∫ 1

t=0

η
(
yΣ(t), zΣ(t)

)
∥r̂′

Σp
(t)∥ dt

+ δ

∫ 1

t=0



∂η
(
yΣ(t), zΣ(t)

)

∂yΣ
yΣp(t) +

∂η
(
yΣ(t), zΣ(t)

)

∂zΣ
zΣp(t)


 ∥r̂′

Σ(t)∥ dt.

(2.A.16)
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So since the free surface is a surface of minimum energy, the first variation of energy

must be equal to zero for all variations ξ and η. Therefore, at O(1) this gives

λ = 2H,

∫ 1

t=0

η(yΣ(t), zΣ(t)) ∥r̂′
Σ(t)∥ dt = 0. (2.A.17)

Then using these constraints, setting the O(δ) terms to zero gives

∫∫

σ

ξ(y, z)(−2Hp + λp)

∥∥∥∥
∂r̂S

∂y
× ∂r̂S

∂z

∥∥∥∥ dydz

+

∫ 1

t=0



∂η
(
yΣ(t), zΣ(t)

)

∂yΣ
yΣp(t) +

∂η
(
yΣ(t), zΣ(t)

)

∂zΣ
yΣp(t)


 ∥r̂′

Σ(t)∥ dt = 0.

(2.A.18)

Meanwhile, by linearising (2.A.5) and (2.A.6) we find that the channel volume is given

by

V ∗
δ = V ∗ + V ∗

p = V ∗ +
δ

2

∫ L

x=−L

∫ 1

t=0

(
z′∂Dy∂Dp

+ z′∂Dp
y∂D − y′∂Dz∂Dp

− y′∂Dp
z∂D

)
dt dx

(2.A.19)

= V ∗ + δ

∫ L

x=−L

∫ 1

t=0

(
z′∂Dy∂Dp

− y′∂Dz∂Dp

)
dt dx (2.A.20)

= V ∗ + δ

∫ L

x=−L

∫ 1

t=0

(
z′∂Dp

y∂D − y′∂Dp
z∂D

)
dt dx, (2.A.21)

where again prime denotes derivative with respect to t, and we have used integration

by parts in t to obtain the final two integrals.

Now define two statements:

Statement P: The mean curvature of S is the same as the mean curvature of Sδ,

so H = Hδ = λ = λδ.

Corollary 1: By setting the mean curvature change to zero,

Hp = λp = 0.

Corollary 2: By setting the first variation of the energy to zero, η is in the set J

such that

∫ 1

t=0



∂η
(
yΣ(t), zΣ(t)

)

∂yΣ
yΣp(t) +

∂η
(
yΣ(t), zΣ(t)

)

∂zΣ
yΣp(t)


 ∥r̂′

Σ(t)∥ dt = 0. (2.A.22)
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Corollary 3: By setting the O(1) terms of the first variation of the energy to zero,

J is a subset of the set K, where K is the set of functions η such that

∫ 1

t=0

η(yΣ(t), zΣ(t)) ∥r̂′
Σ(t)∥ dt = 0. (2.A.23)

Statement Q: The volume of channel S∗ is the same as the volume of channel S∗
δ ,

so V ∗ = V ∗
δ .

Corollary 4: By setting the volume change V ∗
p = 0, the channel variations y∂Dp

and y∂Dp
belong to a set M such that

∫ L

x=−L

∫ 1

t=0

(
z′∂Dp

y∂D − y′∂Dp
z∂D

)
dt dx = 0. (2.A.24)

We then wish to say something about the statements P and Q, i.e, we wish to

find the relationship between the sets J and M. We want to prove that if η ∈ J then

P =⇒ Q, because this would prove that variations which do not cause the mean

curvature to change also do not cause the channel volume to change. We need to prove

this statement for every possible η ∈ J, where J ⊂ K so that “every possible η” means

η such that
∫ 1

t=0
η(yΣ(t), zΣ(t)) ∥r̂′

Σ(t)∥ dt = 0.

Or equivalently, if the channel volume changes in a certain specified way, what can

we say about the set J? The problem is that knowing the functions in the set J requires

knowledge of the position of the perturbed contact line, which is not something we

know a priori. That is, we need to know the position of the gradient of η. This may be

made simpler by considering specific geometries however it is difficult to say anything

in general.
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2.B Long-wave analysis

We elaborate here on the long-wave analysis that leads to the form of the far-field

solution (equation (4.1) in Chapter 2). We start with the Helmholtz equation

1

R2
f +

1

R2
fθθ + fyy = p, (2.B.1)

with boundary conditions

f(y,±θ̃) sin θ̃ ± fθ(y,±θ̃) cos θ̃ = ±b±(y), (2.B.2)

fy(±W, θ) = 0. (2.B.3)

We consider a perturbation b±(y) = ± exp(−y2/s2) that is varying over a very wide

length scale so that s = O(W ). Note that to simplify the analysis we assume that

the perturbations are centred at y = 0 (i.e. aligned); the analysis follows the same

way for non-aligned perturbations. We introduce a strained parameter S = s/W so

that S = O(1). Then if the perturbation is varying on an O(W ) length scale in y, we

also need to introduce a strained variable for y, Y = y/W , so that the perturbation is

varying on an O(1) length scale in Y . The Helmholtz equation becomes

1

R2
f +

1

R2
fθθ +

1

W 2
fY Y = p, (2.B.4)

with boundary conditions

f(Y,±θ̃) sin θ̃ ± fθ(y,±θ̃) cos θ̃ = ±b±(Y ), (2.B.5)

1

W
fY (±1, θ) = 0. (2.B.6)

If 1/W 2 = O(ϵ) it is possible to obtain a disordered series expansion of the Young–

Laplace equation, since the Helmholtz equation in the strained coordinates (2.B.4)

is the O(ϵ) expansion of the Young–Laplace equation where we have neglected O(ϵ2)

terms. So we also need to expand f with the restriction that W 2 ≪ ϵ−1. A Taylor

expansion of the droplet solution (equation (E.14b) in Chapter 2) shows that f ∝
(W −|y|)2, suggesting that if y = WY then f ∼ O(W 2) in the far field. Therefore, we

expand f in powers of W 2 with p = O(1):

f = W 2f0 + f1 +
1

W 2
f2 + . . . , (2.B.7)

p = p0 +
1

W 2
p1 + . . . . (2.B.8)
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Leading-order problem

The leading-order problem at O(W 2) is

1

R2
f0 +

1

R2

∂2f0
∂θ2

= 0, (2.B.9)

where f0 = f0(Y, θ) and with boundary conditions

f0(Y,±θ̃) sin θ̃ ± f0θ(Y,±θ̃) cos θ̃ = 0, (2.B.10)

f0Y (±1, θ) = 0. (2.B.11)

This leads to the solution

f0(Y, θ) = C1(Y ) sin θ + C2(Y ) cos θ, (2.B.12)

where C1(Y ) and C2(Y ) are functions to be found. Then applying the boundary

conditions (2.B.10) at θ = ±θ̃ leads to C1(Y ) = 0. So we have,

f0(Y, θ) = C2(Y ) cos θ, (2.B.13)

dC2

dY
= 0 at Y = ±1. (2.B.14)

The leading-order problem does not have enough information to determine C2 therefore

we need to solve the next-order problem to determine a solvability condition.

Second order problem

At O(1) we have
1

R2
f1 +

1

R2

∂2f1
∂θ2

= p0 −
∂2f0
∂Y 2

, (2.B.15)

with boundary conditions

f1(Y,±θ̃) sin θ̃ ± f1θ(Y,±θ̃) cos θ̃ = ±b±(Y ), (2.B.16)

f1Y (±1, θ) = 0. (2.B.17)

We obtain the solution

f1(Y, θ) = D1(Y ) cos θ +D2(Y ) sin θ

− R2(θ sin θ + cos θ)

2

d2C2

dY
+

b+(Y ) + b−(Y )

2
sin θ +R2p0. (2.B.18)
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After applying the boundary conditions (2.B.16) at θ = ±θ̃, we obtain a solvability

condition for C2(Y ):

d2C2

dY
= K1 +K2 g(Y ), (2.B.19)

K1 =
2 sin θ̃ p0

θ̃ + sin θ̃ cos θ̃
, K2 = − 1

R2

1

θ̃ + sin θ̃ cos θ̃
, (2.B.20)

g(Y ) = b+(Y )− b−(Y ), (2.B.21)

subject to boundary conditions (2.B.14) (from the leading order problem)

dC2

dY
= 0 at Y = ±1. (2.B.22)

So integrating once (with ξ a dummy variable) we obtain

dC2

dY
=

∫ Y

ξ=ν1

(K1 +K2 g(ξ)) dξ, (2.B.23)

with ν1 arbitrary. We then apply the side wall boundary conditions (2.B.17). Imposing

C ′
2(1) = 0 and C ′

2(−1) = 0 we obtain

2K1 +K2

∫ 1

−1

g(ξ) dξ = 0. (2.B.24)

We then put everything back into original variables, using y = WY and (2.B.20)–

(2.B.21), to recover the independent pressure condition, (equation (3.1) from Chapter

2):

p0 =
1

4WR2 sin θ̃

∫ W

−W

(b+(y)− b−(y)) dy. (2.B.25)

We can now integrate (2.B.23) to find C2(Y ). We can only apply one of the side-wall

boundary conditions (2.B.17), therefore we solve the problem in two halves for Y ≥ 0

and Y ≤ 0, then at the end, we can write a complete solution in terms of |Y |.
For Y ≥ 0, we find

C2(Y ) =

∫ Y

η=a1

∫ η

1

(K1 +K2 g(ξ)) dξ dη, (2.B.26)

with a1 is a constant to be found from the volume condition (from the expansion of

equation (2.12) in the Chapter 2 paper). Similarly for Y ≤ 0 we obtain

C2(Y ) =

∫ Y

η=a2

∫ η

−1

(K1 +K2 g(ξ)) dξ dη, (2.B.27)

=

∫ |Y |

η=−a2

∫ η

1

(K1 +K2 g(ξ)) dξ dη, (2.B.28)
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with a2 a constant. The solutions must match for Y = 0 so we need a1 = −a2. Then,

after expanding and putting everything back into original variables, we have

f ≈ W 2f0 = W 2C2

( y

W

)
cos θ. (2.B.29)

After finding C2 by substituting for K1, K2 and g(Y ) in (2.B.26) using (2.B.20)–

(2.B.21), we obtain the full solution for y ∈ [−W,W ]:

f ≈
(

sin θ̃ p0

θ̃ + sin θ̃ cos θ̃
(|y| −W )2

)
cos θ (2.B.30)

−
(

1

R2

1

θ̃ + sin θ̃ cos θ̃

∫ |y|

η=q1

∫ η

1

(b+(ξ)− b−(ξ)) dξ dη

)
cos θ, (2.B.31)

where q1 is a constant to be found from the volume condition. The contact line

displacement is given by equation (2.13b) in Chapter 2:

x̂±
p (y) = f(y,±θ̃) cos θ̃ ∓ fθ(y,±θ̃) sin θ̃

≈
(

sin θ̃ p0

θ̃ + sin θ̃ cos θ̃
(|y| −W )2

)

−
(

1

R2

1

θ̃ + sin θ̃ cos θ̃

∫ |y|

η=q1

∫ η

1

(b+(ξ)− b−(ξ)) dξ dη

)
. (2.B.32)

Note that this is consistent with the far-field solution (equation (4.1) from Chapter 2)

because that solution was obtained by assuming the perturbations b± were negligibly

small in the far field.
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2.C Sensitivity of the system to a wavy perturba-

tion

Although we have considered static equilibrium solutions, for small-amplitude pertur-

bations we may wish to consider the stability of the solutions to small-amplitude wavy

perturbations. Consider the linear system described in §2.1 of Chapter 2,

1

R2
f +

1

R2
fθθ + fyy = p, (2.C.1)

with boundary conditions

f(y,±θ̃) sin θ̃ ± fθ(y,±θ̃) cos θ̃ = ±b±(y), (2.C.2)

fy(±W, θ) = 0. (2.C.3)

Let Q(y, θ) be a solution to this system. We perturb this solution by writing

f = Q(y, θ) + ℜ(δq(θ)eiky), δ ≪ 1, (2.C.4)

that is, we impose a wavy perturbation in the y direction and we look for instabilities.

Substituting into the Helmholtz equation (2.C.1) and equating terms of O(δ), we solve

1

R2
q′′ +

(
1

R2
− k2

)
q = 0,

q(−θ̃) sin θ̃ − q′(−θ̃) cos θ̃ = 0, q(θ̃) sin θ̃ + q′(θ̃) cos θ̃ = 0, (2.C.5)

where prime denotes derivative. We have two cases to consider.

First, if k2R2 − 1 ≤ 0 then integrating and applying the boundary conditions

(2.C.5) leads to q(θ) = 0 unless k = 0. In this case q(θ) = C cos θ, with C a constant,

which is expected since cos θ is an eigenmode of the system.

If k2R2 − 1 > 0 then the general solution is

q = Aeλθ +Be−λθ, (2.C.6)

where A and B are constants and λ =
√
k2R2 − 1. Applying the boundary conditions

(2.C.5) and adding the resulting equations leads to

(A+B)(cosh(λθ̃) sin θ̃ + λ sinh(λθ̃) cos θ̃) = 0, (2.C.7)
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which requires A = −B because by solving for cos(λθ̃) we see that the second bracket

cannot equal zero for θ̃ ∈ (0, π/2). Thus,

q = C sinh(
√
k2R2 − 1 θ) (2.C.8)

Applying the boundary conditions (2.C.5) leads to

C(sinh(λθ̃) sin θ̃ + λ cosh(λθ̃) cos θ̃) = 0. (2.C.9)

Again, the second bracket cannot equal zero for θ̃ ∈ (0, π/2) so that we must take

C = 0. So, other than the previously known eigenmode cos θ, there are no non-trivial

solutions of the system. Thus we conclude that any solution is stable to a wavy

perturbation imposed on it; this includes long-wavelength perturbations.
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The effect of isolated bumps on static menisci in

rectangular channels

Eleanor C. Johnstone, Andrew L. Hazel & Oliver E. Jensen

Abstract

A static liquid-vapour interface is confined in a large aspect-ratio rectangular channel which

is perturbed with localised bump protrusions and intrusions on the upper and lower walls.

Preliminary results for the response of the interface to the perturbations are found by solving

the Young–Laplace equation for the interface shape in a nonlinear framework using Surface

Evolver (Brakke, 1992) and in a linear framework for small-amplitude perturbations (rela-

tive to the height of the channel) using asymptotic methods. We show that axisymmetric

channel-volume-preserving bump perturbations do not change the mean curvature of the

meniscus, whereas channel-volume-changing perturbations induce a change in the pressure

difference over the meniscus, and thus the mean curvature, and lead to long-range curvature

of the contact line and meniscus across the channel. We compute ‘quasi-static’ solutions for

a meniscus moving over a bump by computing equilibrium solutions at varying channel vol-

umes. Preliminary results indicate that the meniscus bulges as it approaches the bump, and

then the direction of the bulging and the shape of the contact line change as the meniscus

moves over the bump via a smooth transition. Unlike the ridge problem (Johnstone, Hazel,

and Jensen, 2022), the shape of the meniscus changes depending on its location relative to

the bump. The limitations of the methods used are discussed, and a plan for further work

is given.

1
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1 Introduction

The use of microfluidic devices to control and manipulate fluids has had an impact across

many areas of science and industry in recent years; for an overview, see, for example, Stone,

Stroock, and Ajdari (2004), Ajaev and Homsy (2006), Anna (2016), and Venkatesan et

al. (2020). The small spatial scales involved mean that surface tension effects dominate

behaviour, and thus fluids in confined microchannels behave quite differently from unbounded

flows. Such configurations can therefore be sensitive to small imperfections in the geometry of

the channel; Pravinraj and Patrikar (2018) and Jia et al. (2019) discuss how these effects may

help or hinder the desired effect of the device. The effects of surface roughness on microfluidic

devices have been extensively studied in a variety of specific scenarios, for example, as a

control variable to manipulate the motion of droplets in microfluidic channels (Shastry,

Case, and Bohringer, 2005), in oil-water displacement (Bera et al., 2018) and electrokinetic

flow in microchannels (Bhattacharyya and Nayak, 2010).

Insights into the effect of geometry on pressure-driven and surface-tension driven flows in

microchannels can be gained through an understanding of the static equilibrium state, as this

forms the base state for the low capillary number dynamical problem. Recently Johnstone,

Hazel, and Jensen (2022) have shown that isolated ridges and grooves can cause significant

bending of the contact line of a meniscus in a rectangular channel; the choice of ridges and

grooves can be chosen to manipulate the contact line to form specific shapes. However, in

reality, surface roughness may not be homogeneous across the length of the channel. We

now examine what happens to a static meniscus in a perturbed rectangular channel when

the perturbations take the form of small localised bumps.

The history of investigating the behaviour of fluid interfaces in the presence of surface

roughness originates with the studies of Wenzel (1936), Cassie and Baxter (1944), and Cassie

(1948) who studied the macroscopic effects of a drop sitting on a rough surface. There

then followed a series of studies examining the effect of various configurations of surface

roughness on droplet wettability, including concentric circular grooves (Johnson and Dettre,
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1964), cross, radial and hexagonal grooves (Huh and Mason, 1977) and, most relevant to

this study, periodic roughness (Cox, 1983) and random roughness (Jansons, 1985). The

latter studies found that periodic and random roughness induced stick-slip behaviour and

contact line hysteresis, leading to irreversibility of the wetting process. The study by Jansons

(1986) further highlights the role of roughness in inducing complex stick-slip behaviour; a

slip condition for fluid flow over rough surfaces was later derived by Miksis and Davis (1994).

In this study, we examine the effect of bump protrusions on a static liquid-vapour interface

in a rectangular channel. By changing the liquid volume we obtain a series of quasi-static

solutions for the interface shape.

We present the nonlinear Young–Laplace model governing the interface shape in §2;

this model is then linearised for small-amplitude perturbations resulting in the governing

equation for the interface shape being the Helmholtz equation. In §3 we show how to solve

the nonlinear model using Surface Evolver (Brakke, 1992) which uses a gradient-descent

method to converge to a surface of minimum energy subject to constraints on the contact

angle (through the surface energy) and the liquid volume. The linear model is solved via

a finite-difference scheme. For the linear model, we also derive a condition for the pressure

difference across the meniscus induced by the perturbations which depends solely on the

boundary data and can therefore be found independently of the interface shape. However, in

contrast to the analogous result obtained for ridge perturbations, the change in pressure due

to the perturbations is not, in general, proportional to the change in channel volume induced

by the perturbations. However, cases where the perturbations on the upper and lower wall

are identical still result in zero change in channel volume and zero induced pressure difference.

We present preliminary results for the deformation of the meniscus and the shape of the

contact line for channel-volume-preserving and channel-volume-changing configurations of

axisymmetric bumps in §4. We compute ‘quasi-static’ solutions at varying channel volumes

to examine the behaviour of the meniscus as it moves over the bump. The results indicate

that the amplitude of deformation of the meniscus increases as the meniscus approaches
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Figure 1: Sketch showing a static meniscus in a rectangular channel 0 ≤ x ≤ 2L, −W ≤ y ≤
W , −1/2 +B−(x, y) ≤ z ≤ 1/2 +B+(x, y) with axisymmetric bump perturbations B±(x, y)
on the upper and lower walls. The shape of the meniscus is described using cylindrical polar
coordinates (r, θ, z) with origin at (x, y, z) = (x0, 0, 0).

the bump. Then, through smooth deformation of the meniscus shape, the direction of

deformation flips as the meniscus crosses the bump. The location of the perturbed contact

line relative to its unperturbed location also swaps as the contact line passes over the bump.

As in the ridge problem, channel-volume-preserving configurations which do not change the

mean curvature of the meniscus lead to contact lines with zero curvature in the far-field,

whereas channel-volume-changing configurations have contact lines that curve across the

channel. We present some conclusions in §5 and a plan to develop the work further.

2 Model

We consider rectangular containers with edge lengths (which are non-dimensionalised on

the channel height) 2L, 2W and 1 in the x, y and z directions respectively (see figure 1),

where the height of the channel is sufficiently small compared to the capillary lengthscale

so that gravitational effects can be ignored. We fill these containers with a fixed volume of

liquid to a static equilibrium position so that we obtain a uniform curvature liquid-vapour

interface. For simplicity we take the pressure in the gas phase to be zero, then the pressure
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difference over the interface is given by the liquid pressure pL, which is a dimensionless

quantity when scaled on surface tension over channel depth. On the upper and lower walls

of the channel, we impose a fixed contact angle ϕ between the liquid-vapour and solid-liquid

interface where 0 ≤ ϕ < π/2. On the side walls, we impose a contact angle π/2. Then the

base equilibrium state is the arc of a cylinder of radius R with contact lines on the upper

and lower walls at x = x0 + R cos θ̃, where θ̃ = π
2
− ϕ is the maximum value of the polar

angle so that R sin θ̃ = 1/2. We introduce cylindrical polar coordinates (r, θ, y) such that

(x, y, z) = (x0 + r cos θ, y, r sin θ), where x0 is related to the volume of liquid V x0
L in the

channel as

x0 = 2L− R

2
cos θ̃ − V x0

L

2W
−R2θ̃. (2.1)

Then the base state is given by r = R ≡ 1/(2 sin θ̃), for θ ∈ [−θ̃, θ̃ ] and y ∈ [−W, W ], with

pL = −1/R.

We then assume that the upper (+) and lower (−) walls have bump perturbations de-

scribed by z = ±1
2
+ B±(x, y). We examine how the meniscus interacts with the wall

perturbations at the microscopic level; that is, we do not assume contact angle hysteresis.

We consider a series of equilibrium solutions where each solution is defined by the volume

of liquid V x0
L . Thus the interface location is specified by perturbations to the radial and

angular polar coordinates relative to the base state with origin at x = x0:

r = R + F (y, θ;x0), θ ∈ [θ̃ + Φ−(y;x0), θ̃ + Φ+(y;x0)], y ∈ [−W,W ]. (2.2)

Assuming that the gas pressure always stays zero, for each liquid volume V x0
L we solve for

the pressure difference across the meniscus px0
L = −R−1 + (pL)

x0
p , where (pL)

x0
p is the change

in pressure of the liquid phase due to the channel perturbations for the equilibrium solution

associated with the base state with origin at x = x0. We find this by solving the Young–

Laplace equation, which relates the uniform mean curvature of the interface to the pressure
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difference across the meniscus px0
L , using the unit normal which points into the liquid phase

n̂x0 :

∆px0 = −∇ · n̂x0|r=R+Fx0 = − 1

L
+

(
(R + F x0)F x0

y

L

)

y

+
1

R + F x0

(
F x0
θ

L

)

θ

, (2.3)

where L ≡
√
(R + F x0)2(1 + F x0

y
2) + F x0

θ
2, F x0 = F (y, θ;x0) and

n̂x0 =
[(R + F x0) cos θ + F x0

θ sin θ]x̂+ [(R + F x0) sin θ − F x0
θ cos θ]ẑ − (R + F x0)F x0

y ŷ

L
.

(2.4)

We impose boundary conditions that the contact line must touch the perturbed channel

walls,

(
R+ F (y, θ;x0)

)
sin θ = ±1

2
+B±

(
x0 + (R+ F (y, θ;x0)) cos θ, y

)
at θ = ±θ̃ +Φ±(y;x0).

(2.5)

Note here that we have to include the x-dependence of the wall shape through the polar

coordinate parametrisation; that is, we evaluate the shape of the wall at the (unknown)

contact line location.

Next, to impose a contact angle ϕ on the upper and lower channel walls we firstly let v̂±

be the unit normals to the upper and lower channel walls pointing out of the channel. So,

v̂± = ±
−∂B±

∂x
x̂− ∂B±

∂y
ŷ + ẑ

√
1 +

(
∂B±
∂x

)2

+

(
∂B±
∂y

)2
, (2.6)

where B± = B±(x, y). Then we define v̂x0
± to be the unit normal evaluated at the point where

the contact line of the meniscus associated with the base state at origin x = x0 touches the

wall. That is, we evaluate v̂± at x = x0 + (R + F (y, θ;x0)) cos θ, with θ = ±θ̃ + Φ±(y;x0).
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Then, the contact angle condition is given by

n̂x0 · v̂x0
± = cosϕ at θ = ±θ̃ + Φ±(y;x0), (2.7)

where n̂x0 (given by (2.4)) is evaluated at θ = ±θ̃+Φ±(y;x0). The contact-line displacement

on the upper and lower walls x±(y;x0) is given by

x±(y;x0) = x0 +
(
R + F x0(y,±θ̃ + Φx0

± (y)
)
cos
(
± θ̃ + Φx0

± (y)
)
. (2.8)

To impose a contact angle π/2 on the side walls, we require

Fy(±W, θ;x0) = 0. (2.9)

Finally, we impose that changes to channel volume due to the perturbations do not change

the liquid volume V x0
L .

2.1 Linear model

We consider perturbations of small maximum amplitude ϵ relative to (non-dimensional)

unit channel depth, so that B±(x, y) = ϵb±(x, y), where b±(x, y) = O(1) as ϵ → 0. We

linearise the nonlinear model (2.2) with the assumption that, for each fixed liquid volume

V x0
L , the resulting radial perturbations and change in contact line location are also O(ϵ)

and the perturbations lead to an O(ϵ) change in pressure difference across the meniscus.

Thus, we write (pL)
x0
p = ϵpx0 , so that px0

L = −R−1 + ϵpx0 , with F (y, θ;x0) = ϵf(y, θ;x0) and

Φ±(y;x0) = ϵΘ±(y;x0), so that the interface location is given by

r = R + ϵf(y, θ;x0), θ ∈
[
−θ̃ + ϵΘ−(y;x0), θ̃ + ϵΘ+(y;x0)

]
, y ∈ [−W, W ]. (2.10)
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As in the the case of ridge perturbations (Johnstone, Hazel, and Jensen, 2022), the leading

order approximation to the Young–Laplace equation (2.3) is the Helmholtz equation

1

R2
fx0 +

1

R2
fx0
θθ + fx0

yy = px0 , y ∈ [−W,W ], θ ∈ [−θ̃, θ̃], (2.11)

where fx0 = f(y, θ;x0). At O(ϵ), the boundary condition (2.5) constraining the contact line

to lie on the upper and lower walls is

R cos θ̃ Θ±(y)± f(y,±θ̃;x0) sin θ̃ = b±(x0 +R cos θ̃, y), (2.12)

while the O(ϵ) expansion of boundary condition (2.7) fixing the contact angle is

cos θ̃


fθ(y,±θ̃;x0) +R

∂b±
∂x

∣∣∣∣∣
(x0+R cos θ̃,y)

−RΘ±(y;x0)


 = 0. (2.13)

Combining (2.12)–(2.13) gives a single condition for the solution fx0 in terms of the boundary

data:

f(y,±θ̃;x0) sin θ̃±fθ(y,±θ̃;x0) cos θ̃ = ±b±(x0+R cos θ̃, y)∓R cos θ̃
∂b±
∂x

∣∣∣∣∣
(x0+R cos θ̃,y)

. (2.14)

The linearised contact-line displacement on the upper and lower walls x±(y;x0) is found by

Taylor expanding the displacement equation (2.8) for x = x0+r cos θ at θ = ±θ̃+ϵΘ±(y;x0):

x±(y;x0) = x0 +R cos θ̃ + ϵx±
p (y;x0) +O(ϵ2), (2.15)

x±
p (y;x0) = f(y,±θ̃;x0) cos θ̃ ∓ fθ(y,±θ̃;x0) sin θ̃ ∓R sin θ̃

∂b±
∂x

∣∣∣∣∣
(x0+R cos θ̃,y)

. (2.16)

The side wall boundary condition (2.9) becomes

fy(±W, θ;x0) = 0. (2.17)
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We note that although we have imposed side wall boundary conditions (2.17) on fx0 , the

contact line displacement x±
p (y;x0) does not necessarily have zero y-derivative; this is because

through linearisation we have projected the contact line displacement onto a flat wall which

results in an extra gradient term appearing. However if we insist that the bumps are not

located close to the side walls in wide channels, then the gradient of the bump will be

negligibly small for y = ±W .

The system (2.11), (2.14), (2.17) has infinitely many solutions because if h(θ, y) is a

solution, then h + λ cos θ is also a solution for any λ ∈ R. Therefore to fix one solution we

finally insist that the volume of liquid V x0
L is invariant with respect to changes in channel

volume; for a full derivation see appendix A. This condition is

∫ W

−W

∫ θ̃

−θ̃

fx0(y, θ) dθ dy =
1

R

∫ W

−W

∫ 2L

x0+R cos θ̃

(b+(x, y)− b−(x, y)) dx dy = V x0 , (2.18)

where V x0 , which is a constant for each x0, is the change in vapour volume due to the

perturbations for a fixed liquid volume V x0
L .

2.1.1 Zero contact angle

When the contact angle ϕ on the upper and lower walls is zero (so that θ̃ = π/2), the

meniscus meets the walls tangentially. The problem remains the same however an expansion

to powers of O(ϵ2) is needed to obtain boundary condition (2.13) which then says:

fθ

(
y,±π

2
;x0

)
+R

∂b±
∂x

∣∣∣∣∣
(x0,y)

−RΘ±(y;x0) = 0. (2.19)

2.1.2 Finding the pressure from the boundary data

We can exploit the fact that the Helmholtz equation is self-adjoint to derive an independent

equation for the change in pressure difference over the meniscus due to small-amplitude

perturbations for which the linear model is valid.
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For each fixed x0, we multiply the Helmholtz equation (2.11) in the domain D =

[−W,W ]×[−θ̃, θ̃] by a smooth, twice differentiable test function gx0(θ) = g(θ;x0) : [−θ̃, θ̃] →

R such that

R−2[(gx0)′′ + gx0 ] = ax0 ∈ R; g(±θ̃;x0) = γx0
± , g′(±θ̃;x0) = ζx0

± , (2.20)

where ax0 , γx0
± and ζx0

± are constants associated with each function gx0 . After integrating

over the domain D, we obtain

∫

D

ax0fx0 + ∇̃ · (gx0∇̃fx0 − fx0∇̃gx0) dA =

∫

D

gx0px0 dA, (2.21)

where ∇̃ = (∂y, R
−1∂θ) is the rescaled divergence operator. After application of the two-

dimensional divergence theorem and the boundary conditions on gx0 , we obtain

∫

D

ax0fx0 dA+R−2

∫ W

−W

[−γx0
− fx0

θ (y,−θ̃) + ζx0
− fx0(y,−θ̃) + γx0

+ fx0
θ (y, θ̃)− ζx0

+ fx0(y, θ̃)] dy

=

∫

D

gx0px0 dA. (2.22)

The choice of test function g(θ;x0) = cos θ conveniently leads to ax0 = 0, γx0
± = cos θ̃ and

ζx0
± = ∓ sin θ̃ for all x0). After applying the boundary conditions (2.14) on fx0 , we obtain

an independent equation for the pressure:

px0 =
1

4WR2 sin(θ̃)

∫ W

−W

{
b+(x0 +R cos θ̃, y)− b−(x0 +R cos θ̃, y)

}
dy

− 1

4WR2 sin(θ̃)

∫ W

−W



R cos θ̃


∂b+

∂x

∣∣∣∣∣
(x0+R cos θ̃,y)

− ∂b−
∂x

∣∣∣∣∣
(x0+R cos θ̃,y)





 dy. (2.23)

So the pressure can be determined before solving for the equilibrium solution and it depends

on the amplitude of the perturbation and its gradient.
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2.1.3 Pressure-volume relationship

Comparing the volume condition (2.18) and the independent pressure condition (2.23), we

now see that, unlike in the ridge problem, there is no link between the induced pressure

difference over the meniscus being zero and the change in channel volume due to the per-

turbations being zero. However, special cases of perturbations with b+ = b− will still lead to

zero induced pressure difference and zero change in channel volume, whereas perturbations

with b+ = −b− will lead to both a change in channel volume and a change in pressure differ-

ence across the meniscus (and therefore the perturbations will change the mean curvature

of the meniscus).

3 Methods

For the remainder of this study, we consider Gaussian perturbations of the form

B−(x, y) = ϵ exp

(
−(x− x−

c )
2

s
− y2

s

)
, b−(x, y) = exp

(
−(x− x−

c )
2

s
− y2

s

)
, (3.1)

B+(x, y) = ϵa exp

(
−(x− x+

c )
2

s
− y2

s

)
, b+(x, y) = a exp

(
−(x− x+

c )
2

s
− y2

s

)
, (3.2)

where ϵ is the maximum amplitude of the bump, a = ±1 to define the orientation of the

bump on the upper wall, s defines the width of the perturbations, and the parameter x±
c

controls their location in the x direction. For the remainder of this study we take x+
c = x−

c .

3.1 Nonlinear problem: Surface Evolver solution

We use Surface Evolver (Brakke, 1992) to solve the nonlinear problem. We mesh an initial

guess for the wetted surface, comprising the solid-liquid and liquid-vapour interfaces, by

specifying the vertices, edges (connecting vertices) and facets (enclosed by edges) of the

initial wetted surface. For computational efficiency, we mesh the surface from −W ≤ y ≤ 0

as the problem is symmetric about y = 0. For this problem the initial guess specifies the
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solid-liquid interfaces exactly since these are known and approximates the unknown liquid-

vapour interface by a flat plane; we have found that this is sufficient for convergence. Then,

the surface is parametrised by the set of vertex coordinates X, and the total energy of the

surface is a function E(X) which we work to minimise subject to constraints.

The first constraint imposes that vertices on the solid-liquid interface must stay in contact

with the solid surface; this is a local condition on each vertex Xi ∈ X. We implement this

condition by specifying the level set that each vertex must lie on. This condition removes

one degree of freedom from the problem for each constrained vertex.

Second, we fix the volume of liquid enclosed by the wetted surface; this is a global con-

straint and implementation is handled internally by Surface Evolver once the liquid volume

is specified. Denoting the wetted surface of the channel (the blue surfaces in figure 1) by S,

the volume of liquid V x0
L is calculated in terms of S using the three-dimensional divergence

theorem: defining a vector F such that ∇ · F = 1,

V x0
L =

∫∫∫

V
x0
L

1 dV =

∫∫∫

V
x0
L

∇ · F dV =

∫∫

S

F · v̂ dA, (3.3)

where as described in §2, v̂ is the outward pointing unit normal to the wetted surface S

and the most convenient choice is F = xx̂. (In Surface Evolver, F = zẑ ensures that

volumes are calculated by projecting surfaces onto the plane z = 0, so in practice we solve

the problem rotated by 90◦.) The global volume condition removes one degree of freedom

from the problem.

In addition, we wish to impose a contact angle on the solid-liquid interface. We specify

a contact angle αw on the wetted surface S through the surface energy Es of the wall,

ES =

∫∫

S

− cosαw dA. (3.4)

Thus, we fix the surface energy of the facets comprising the solid-liquid interface. Each facet

has a surface tension which is one unless the user specifies otherwise. After specifying the
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contact angle, the calculation of surface energy is handled internally by Surface Evolver: the

contribution to the total energy is the sum of all the facet areas times their respective surface

tensions. Thus, this constraint does not change the number of degrees of freedom in the

problem. We denote that wetted sections of the upper and lower walls at z = ±1/2+B±(x, y)

by S±, and the wetted sections of the side walls at y = ±W by S±W
respectively. We take

αw = ϕ on S± and αw = π/2 on S±W
(so that the energy of the side walls is zero).

We then iterate towards a surface of minimum energy; details of the iteration process are

given in appendix B. We converge to an energy minimum by iteratively refining the mesh

and using quadratic convergence methods to converge the solution on this mesh to within a

specified tolerance. The process stops when the difference in surface energy between solutions

on consecutive meshes is within a specified tolerance. We use a tolerance of 10−7 for the

accuracy of the solution on each mesh and the difference between the surface energy of the

equilibrium solutions between meshes. We check for positive eigenvalues of the Hessian of

the energy function E(X) near the equilibrium to ensure a minimum has been reached.

3.2 Linear problem: finite difference scheme for solutions

For each liquid volume V x0 , we implement a second-order-accurate central finite-difference

scheme to integrate the linearised system (2.11), (2.14), (2.17) and (2.18). We discretise

the system on a five-point stencil for a rectangular grid for −W ≤ y ≤ W , −θ̃ ≤ θ ≤ θ̃.

Therefore θ = j∆θ = θj for 0 ≤ j ≤ M + 1, y = k∆y = yk for 0 ≤ k ≤ N + 1, where the

grid size is ∆θ = 2θ̃/(M + 1) and ∆y = 2W/(N + 1). Then the solution at each grid point

is fx0(yk, θj) = fk
j , where the x0 superscript notation is dropped for clarity.

On the interior of the grid, the discretisation of the Helmholtz equation (2.11) is

1

R2

1

∆θ2
fk
j−1 +

1

R2

1

∆θ2
fk
j+1 +

1

∆y2
fk−1
j +

1

∆y2
fk+1
j +

(
1

R2
− 2

R2

1

∆θ2
− 2

∆y2

)
fk
j = px0 ,

1 ≤ j ≤ M, 1 ≤ k ≤ N, (3.5)
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where px0 is found for the Gaussian perturbations (3.1)–(3.2) from the independent pressure

condition (2.23).

The Robin boundary conditions (2.14) and Neumann boundary conditions (2.17) are

implemented at the edges of the grid; at the corners both boundary conditions are valid but

we implement the more restrictive Robin condition (2.14). Thus at the edges of the grid,

sin θ̃fk
0 − cos θ̃

−3fk
0 + 4fk

1 − fk
2

2∆θ
= K−(yk), 0 ≤ k ≤ N + 1, (3.6)

sin θ̃fk
M+1 + cos θ̃

fk
M−1 − 4fk

M + 3fk
M+1

2∆θ
= K+(yk), 0 ≤ k ≤ N + 1, (3.7)

−3f 0
j + 4f 1

j − f 2
j

2∆y
= 0, 1 ≤ j ≤ M, (3.8)

fN−1
j − 4fN

j + 3fN+1
j

2∆y
= 0, 1 ≤ j ≤ M, (3.9)

where

Kx0
± (y) = ±b±(x0 +R cos θ̃, y)∓R cos θ̃

∂b±
∂x

∣∣∣∣∣
(x0+R cos θ̃,y)

. (3.10)

Finally, as discussed in §2.1, without the volume condition the Helmholtz equation (2.11)

together with the boundary conditions (2.14), (2.17) has infinitely many solutions, and we

thus close the system with the volume condition (2.18).

In the ridge problem (Johnstone, Hazel, and Jensen, 2022) we implemented the volume

condition using quadrature by replacing one line of the matrix with the discretised volume

constraint. However, this approach does not work in the current problem as the degree of

freedom in the continuous problem does not directly translate to the discrete problem, as

the matrix of coefficients of the discretised system is near singular but has a zero eigenvalue

only in the limit of ∆y, ∆θ → 0. This discrepancy could occur because the finite difference

scheme used is not conserving fluxes however we have not had time to investigate this further.

As discussed in §2, cos θ is an eigenmode of the continuous problem, which is removed
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via the volume condition. Therefore to implement the volume condition we write

f̃k
j = fk

j + λ cos θj, (3.11)

where λ ∈ R is a free variable. We substitute this solution into the discretised equations

(3.5)–(3.9). The inclusion of the free variable λ provides the degree of freedom necessary to

impose the volume constraint which we implement via trapezium rule:

∫ W

−W

∫ θ̃

−θ̃

fx0(y, θ) dθ dy

≈ W

(N + 1)

θ̃

(M + 1)

(
f 0
0 + 2

M∑

j=1

f 0
j + f 0

M+1 + 2
N∑

k=1

(
fk
0 + 2

M∑

j=1

fk
j + fk

M+1

)

+fN+1
0 + 2

M∑

j=1

fN+1
j + fN+1

M+1

)
. (3.12)

The discretised system comprises (M + 2)(N + 2) + 1 equations: MN for the Helmholtz

equation (3.5), together with 2(M +N +2) for the boundary conditions (3.6)–(3.9), and one

for the volume condition (3.12). The matrix of coefficients is of size ((M +2)(N +2)+ 1)×

((M + 2)(N + 2) + 1). The first (M + 2)(N + 2) rows and columns of the matrix have a

block structure, with each block being of size (M + 2) × (M + 2), and with (N + 2) block

rows and (N + 2) block columns. The matrix of coefficients is given in Appendix C for a

very simplified case with M = N = 1.

We solve the system using a direct solver which takes advantage of the sparsity in the

matrix structure. We use a grid with M = 37 interior grid points in the θ direction and

N = 2003 interior grid points in the y direction.

4 Results

We present preliminary results for solutions of the linear and nonlinear models to show the

effect of small-amplitude Gaussian perturbations (b±(x, y) as described in (3.1)–(3.2)) on the



E. C. Johnstone, A. L. Hazel and O. E. Jensen

(a) V x0
L ≈ 1.85 and V x0

L ≈ 37.85 (b) V x0
L ≈ 18.85 and V x0

L ≈ 20.85

Figure 2: The location of the unperturbed contact line for (a) figures 3–4 and (b) figures
5–6 with sx = sy = 1, x±

c = 2, W = 5, L = 2 and ϕ = 85. The black solid lines denote the
unperturbed contact line location. The black dashed lines denote amplitude contours of the
perturbation b±(x, y) at 10% intervals. The blue dot denotes the centre of the perturbation.
The arrow denotes the direction of increasing liquid volume.

shape of the meniscus and contact line. We generate quasi-static solutions by solving the

linear and nonlinear problems for increasing values of the liquid volume V x0
L from (2.18),

corresponding to decreasing values of x0 (see figure 1). We show solutions for mirror anti-

symmetric (b+ = b−) channel-volume-preserving and mirror-symmetric (b+ = −b−) channel-

volume-changing perturbations, with the centre of the bumps on the upper and lower wall

at x±
c = 2 which is in the middle of the channel.

We first consider two pairs of solutions for menisci situated behind and in front of the

bump; the locations of the unperturbed contact lines for each pair are shown in figure 2.

In figures 3 and 4, we show the upper and lower contact lines, together with the radial

perturbation fx0 to the meniscus, for menisci situated far behind and far in front of the

bump (corresponding to initial contact line locations shown in figure 2a). Note that we plot

the contact lines from the viewpoint of looking down on the channel with decreasing x-values

on the vertical axis corresponding to the direction of increasing channel volume as shown

in figure 1. The solutions retain the characteristics of the ridge problem (Johnstone, Hazel,

and Jensen, 2022). We see a smooth deformation of the meniscus and contact line with
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zero curvature in the far-field for channel-volume-preserving perturbations (figure 3) since

the perturbations have not induced a change in pressure difference, i.e. mean curvature.

Meanwhile, the meniscus and contact line are curved in the far-field for channel-volume-

changing perturbations (figure 4).

We note that there is a slight disagreement between the Surface Evolver and linear

solutions in the location of the contact line for the channel-volume-changing perturbations

(figure 4). Examination of the linear solution for varying M and N shows that the error does

not decrease with grid size, therefore is not due to imposing the volume condition via the

trapezium rule (as described in §3.2). However, this volume condition, and the governing

Helmholtz equation (2.11) and boundary conditions (2.12)–(2.14), are only correct to O(ϵ),

which is larger than the error seen in the contact line location. Thus it is likely that the

discrepancy in contact line locations is within the error of the approximation.

The red colour in the heat map indicates an increase in radius r so that the meniscus

is pushed into the liquid phase, whereas blue colours correspond to the meniscus moving

towards the vapour phase. The maximum amplitude of the change in meniscus shape fx0

is slightly greater behind the bump (figures 3a, 4a) than in front of it (figures 3b, 4b).

Bump intrusions cause the contact line to move in a different direction from the protrusions.

Moreover, the direction of displacement of both the meniscus and the contact lines flips as

the meniscus crosses the bump.

Solutions for menisci that are closer to the centre of the bump (figures 5 and 6) show that

the maximum amplitude of the radial perturbation fx0 is significantly greater just behind the

bump (figures 5a, 6a) than just in front of it (figures 5b, 6b). Thus the meniscus bulges as it

approaches the bump, but experiences less deformation as it passes over the top. However,

this change in amplitude is not reflected in the amplitude of the contact line displacement,

which remains similar on both sides of the bump.

To examine this further, in figures 8 and 9 we plot the upper and lower contact lines,

together with the radial perturbation fx0 to the meniscus, as the meniscus travels over the
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(a) V x0
L ≈ 1.85

(b) V x0
L ≈ 37.85

Figure 3: The upper and lower contact line displacement x±(y) (black/red line plots), to-
gether with the radial perturbation fx0 to the meniscus (heat map), for mirror anti-symmetric
channel-volume-preserving Gaussian perturbations with a = 1, sx = sy = 1, x±

c = 2, W = 5,
L = 2, ϕ = 85, and ϵ = 0.01. The contact lines are plotted as viewed looking down on the
channel, with the liquid shaded blue as shown in figure 1. The black line denotes the linear
solution, x± from (2.15), and the red line denotes the Surface Evolver solution computed in
a half channel −W ≤ y ≤ 0. In the heat map, positive and negative values indicate deforma-
tion towards the liquid and vapour respectively. Figures (a) and (b) are for x0+R cos θ̃ = 3.8
and 0.2, which correspond to liquid volumes V x0

L ≈ 1.85, V x0
L ≈ 37.85 respectively.
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(a) V x0
L ≈ 1.85

(b) V x0
L ≈ 37.85

Figure 4: The upper and lower contact line displacement x±(y) (black/red line plots), to-
gether with the radial perturbation fx0 to the meniscus (heat map), for mirror symmetric
channel-volume-changing Gaussian perturbations with a = −1, sx = sy = 1, x±

c = 2, W = 5,
L = 2, ϕ = 85, and ϵ = 0.01. The contact lines are plotted as viewed looking down on the
channel, with the liquid shaded blue as shown in figure 1. The black line denotes the linear
solution, x± from (2.15), and the red line denotes the Surface Evolver solution computed in
a half channel −W ≤ y ≤ 0. In the heat map, positive and negative values indicate deforma-
tion towards the liquid and vapour respectively. Figures (a) and (b) are for x0+R cos θ̃ = 3.8
and 0.2, which correspond to liquid volumes V x0

L ≈ 1.85, V x0
L ≈ 37.85 respectively.
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(a) V x0
L ≈ 18.85

(b) V x0
L ≈ 20.85

Figure 5: The upper and lower contact line displacement x±(y) (black/red line plots), to-
gether with the radial perturbation fx0 to the meniscus (heat map), for mirror anti-symmetric
channel-volume-preserving Gaussian perturbations with a = 1, sx = sy = 1, x±

c = 2, W = 5,
L = 2, ϕ = 85, and ϵ = 0.01. The contact lines are plotted as viewed looking down on the
channel, with the liquid shaded blue as shown in figure 1. The black line denotes the linear
solution, x± from (2.15), and the red line denotes the Surface Evolver solution computed in
a half channel −W ≤ y ≤ 0. In the heat map, positive and negative values indicate deforma-
tion towards the liquid and vapour respectively. Figures (a) and (b) are for x0+R cos θ̃ = 2.1
and 1.9, which correspond to liquid volumes V x0

L ≈ 18.85, V x0
L ≈ 20.85 respectively.
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(a) V x0
L ≈ 18.85

(b) V x0
L ≈ 20.85

Figure 6: The upper and lower contact line displacement x±(y) (black/red line plots), to-
gether with the radial perturbation fx0 to the meniscus (heat map), for mirror symmetric
channel-volume-changing Gaussian perturbations with a = −1, sx = sy = 1, x±

c = 2, W = 5,
L = 2, ϕ = 85, and ϵ = 0.01. The contact lines are plotted as viewed looking down on the
channel, with the liquid shaded blue as shown in figure 1. The black line denotes the linear
solution, x± from (2.15), and the red line denotes the Surface Evolver solution computed in
a half channel −W ≤ y ≤ 0. In the heat map, positive and negative values indicate deforma-
tion towards the liquid and vapour respectively. Figures (a) and (b) are for x0+R cos θ̃ = 2.1
and 1.9, which correspond to liquid volumes V x0

L ≈ 18.85, V x0
L ≈ 20.85 respectively.
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(a) V x0
L ≈ 19.35 to 20.35. (b) V x0

L ≈ 19.75 to 20.75.

Figure 7: The location of the unperturbed contact line for (a) figure 8 and (b) figure 9. The
black solid lines denote the unperturbed contact line location. The black dashed lines denote
amplitude contours of the perturbation b±(x, y) at 10% intervals. The blue dot denotes the
centre of the perturbation. The arrow denotes the direction of increasing liquid volume.

centre of the bump; the configurations are shown in figure 7. The figures show the smooth

change in the direction of the contact line displacement as the meniscus travels over the

bump.

First, we note that the change in sign of the radial perturbation fx0 does not occur as

the meniscus passes over the centre of the bump at x = 2. As the meniscus travels over

the bump, the meniscus continues to bulge in the same direction, although the amplitude

of deformation decreases until there is eventually negligible deformation, at which point the

meniscus starts to bulge in the opposite direction so that we obtain the results seen in figures

5 and 6. However, the change in direction of the displacement of the contact line occurs

for smaller liquid volumes than the change in direction of the deformation of the meniscus.

The expansion of the contact line solution in (2.15) contains gradients of the boundary data

b±(x). This term is due to the calculation of the contact line location as a projection onto

a flat plane. The derivative changes sign for x < x±
c and x > x±

c . Therefore, even while the

sign of radial perturbation fx0 has not changed, this term causes the direction of the contact

line displacement to change.

From figures 8 and 9, we also see that the contact line shape and amplitude of displace-
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ment of the contact line are not symmetric on each side of the bump. Again, this is because

the change in sign of the radial perturbation fx0 does not occur directly over the top of the

bump, but the change in sign of the gradient term in the contact line equation (2.15) does.

5 Dicussion

We have presented preliminary results for the deformation of a meniscus due to small-

amplitude isolated Gaussian bumps on the walls of a rectangular channel. We restricted

our attention to mirror anti-symmetric channel-volume-preserving and mirror-symmetric

channel-volume-changing perturbations. We derived a linear argument to show that the

pressure induced by the former perturbations is zero, leading to solutions with zero far-field

mean curvature. The predictions of the contact line and meniscus shape from a linear model

are confirmed by computations of the full nonlinear solution using Surface Evolver (Brakke,

1994).

Furthermore, our results indicate that the deformation of the meniscus as it travels over

the bump is not symmetric on each side of the bump. The amplitude of the deformation of

the meniscus increases as it approaches the bump so that the meniscus bulges. Then as the

meniscus crosses the centre of the bump the amplitude of deformation decreases and becomes

almost negligible. The direction of deformation then changes and grows in amplitude again

as the liquid volume is increased further.

We obtained the Surface Evolver solutions by meshing the entire liquid-vapour inter-

face. This could lead to issues with larger-amplitude, sharper or more complex perturbation

shapes where meshing with triangles could become computationally expensive. An alter-

native implementation would be to mesh only the liquid-vapour interface and include the

energy and volume contributions of the un-meshed surfaces via line integrals using Stokes’

theorem; see appendix 3.A for more details. However, this is a difficult problem for the bump

perturbations discussed here and we have not been able to find a solution.
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(a) V x0
L ≈ 19.35 (b) V x0

L ≈ 19.55 (c) V x0
L ≈ 19.75

(d) V x0
L ≈ 19.95 (e) V x0

L ≈ 20.15 (f) V x0
L ≈ 20.35

Figure 8: The upper and lower contact line displacement x±(y) (black/red line
plots)(black/red line plots), together with the radial perturbation fx0 to the meniscus (heat
map), for mirror anti-symmetric channel-volume-preserving Gaussian perturbations with
a = 1, sx = sy = 1, x±

c = 2, W = 5, L = 2, ϕ = 85, and ϵ = 0.01. The black
and red lines denote the linear and Surface Evolver solutions respectively. Figures (a)–
(f) are for x0 + R cos θ̃ = 2.05, 2.03, 2.01, 1.99, 1.97 and 1.95, which correspond to liquid
volumes V x0

L ≈ 19.35, 19.55, 19.75.19.95, 20.15 and V x0
L ≈ 20.35 respectively. On the colour-

bar fx0
min = −0.12, fx0

max = 0.12.
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(a) V x0
L ≈ 19.75 (b) V x0

L ≈ 19.95 (c) V x0
L ≈ 20.15

(d) V x0
L ≈ 20.35 (e) V x0

L ≈ 20.55 (f) V x0
L ≈ 20.75

Figure 9: The upper and lower contact line displacement x±(y) (black/red line plots), to-
gether with the radial perturbation fx0 to the meniscus (heat map), for mirror symmetric
channel-volume-changing Gaussian perturbations with a = −1, sx = sy = 1, x±

c = 2,
W = 5, L = 2, ϕ = 85, and ϵ = 0.01. The black and red lines denote the linear and Surface
Evolver solutions respectively. Figures (a)–(f) are for x0+R cos θ̃ = 2.01, 1.99, 1.97, 1.95, 1.93
and 1.91, which correspond to liquid volumes V x0

L ≈ 19.75, 19.95, 20.15, 20.35, 20.55 and
V x0
L ≈ 20.75 respectively. The blue dot denotes the centre of the bump. On the colourbar

fx0
min = −0.75, fx0

max = −0.03.
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Obtaining solutions to the nonlinear problem using Surface Evolver was challenging and

therefore due to time constraints, we have only presented preliminary results here for a

narrow range of parameters. There is thus ample scope for future work which will initially

consist of three parts. First, we wish to understand in more detail the deformation of the

meniscus as it travels over the bump, including the bulging effect and the asymmetry as

a function of the liquid volume. Next, we wish to examine the system for a wider range

of parameters. Specifically, we wish to focus on the effect of the width of the bump and

its location in the y-direction. In the ridge problem (Johnstone, Hazel, and Jensen, 2022),

changing the location of the ridge caused a scattering effect which led to large-amplitude

displacement of the contact line even for small-amplitude perturbations; we might expect to

see similar behaviour here. Finally, we wish to extend this analysis by considering arrays

of isolated bumps, which are a more realistic representation of the surface roughness found

in industrial and biological problems. Understanding this surface roughness is important in

developing models of dynamic contact angles and hysteresis effects.

Finally, we would also like to investigate the zero contact angle dynamical problem for

low capillary numbers. This relates to the Bretherton problem (Bretherton, 1961), which

investigates the steady motion of an air finger in a tube using lubrication theory. The motion

of the finger deposits thin fluid films on the walls of the channel. It would be intriguing to

consider how the presence of a bump affects the shape of the meniscus and the films.
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Appendix A Volume Constraint

To find the volume constraint we first find the volume of the perturbed channel, then we find

the volume of the vapour in the perturbed channel. Then we use the fact that the volume

of vapour plus the volume of liquid must equal the channel volume to obtain a condition for

the interface location.

A.1 Volume of the perturbed channel

The volume of the perturbed channel is given by

V̂C =

∫ W

−W

∫ 2L

0

∫ 1
2
+B+(x,y)

− 1
2
+B−(x,y)

dz dx dy

=

∫ W

−W

∫ 2L

0

(1 + B+ (x, y)− B− (x, y)) dx dy. (A.1)

After linearisation, the expansion of the channel volume to O(ϵ) is

V̂C = 4WL+ ϵ

∫ 2L

0

∫ W

−W

(b+ (x, y)− b− (x, y)) dy dx. (A.2)

A.2 Volume of vapour in the perturbed channel

We find the volume of vapour in the perturbed channel for a meniscus with liquid volume

V x0
L ; that is, a meniscus with contact location specified relative to unperturbed location at

x = x0. Using the three-dimensional divergence theorem, the volume of vapour V̂V in the

perturbed channel is given by

∫∫∫

V̂V

dV =

∫∫∫

V̂V

∇ · (zẑ) dV,

=

∫∫

SV̂V

(zẑ) · N̂ dΣ, (A.3)
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where SV̂V
is the surface enclosing the vapour volume V̂V and N̂ is the outward pointing unit

normal to this surface. As shown in figure 1, the surface SV̂V
is comprised of six parts: the

end wall at x = 0, the side walls at y = ±W , the upper and lower walls at z = ±1
2
+B±(x, y)

and the liquid-vapour interface at r = R + F x0(y, θ). Only the upper/lower walls and the

liquid-vapour interface contribute to the volume calculation since on the other parts of the

surface zẑ · N̂ = 0.

We first consider the surface integral on the upper wall. This surface is parametrised by

(x, y, z) 7→ g+(x, y) =

(
x, y,

1

2
+B+(x, y)

)
, (A.4)

0 ≤ x ≤ x+(y), −W ≤ y ≤ W, (A.5)

where xx0
+ (y) = x0 +

(
R + F x0(y, θ̃ + Φx0

+ (y)
)
cos
(
θ̃ + Φx0

+ (y)
)
is the location of the upper

contact line. So the volume contribution from the surface integral (A.3) over the upper wall

is

V̂V+ =

∫ W

y=−W

∫ x
x0
+ (y)

x=0

(
1

2
+B+(x, y)

)
ẑ · N̂

∣∣∣∣
∂g+

∂x
× ∂g+

∂y

∣∣∣∣ dx dy, (A.6)

where on the upper wall

N̂ =

−∂B+

∂x
x̂− ∂B+

∂y
ŷ + ẑ

√
1 +

(
∂B+

∂x

)2

+

(
∂B+

∂y

)2
. (A.7)
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After linearising, the expansion to O(ϵ) is

V̂V+ =

∫ W

y=−W

∫ x0+R cos θ̃+ϵ(fx0 (y,θ̃) cos θ̃−Θ
x0
+ (y)R sin θ̃)

x=0

(
1

2
+ ϵb+(x, y)

)
dx dy

= W (x0 +R cos θ̃)

+ ϵ

(∫ W

−W

−Θx0
+ (y)R sin θ̃

2
+

fx0(y, θ̃) cos θ̃

2
dy +

∫ W

−W

∫ x0+R cos θ̃

0

b+ (x, y) dx dy

)
.

(A.8)

Similarly, the volume contribution from the surface integral (A.3) over the lower wall is

V̂V− = W (x0 +R cos θ̃)

+ ϵ

(∫ W

−W

Θx0
− (y)R sin θ̃

2
+

fx0(y,−θ̃) cos θ̃

2
dy −

∫ W

−W

∫ x0+R cos θ̃

0

b− (x, y) dx dy

)
.

(A.9)

Finally we consider the surface integral over the liquid-vapour interface, which is parametrised

in cylindrical polar coordinates (x, y, z) = (x0 + r cos θ, y, r sin θ) by

(x, y, z) 7→ gLV (y, θ) =
(
x0 +

(
R + F x0(y, θ)

)
cos θ, y,

(
R + F x0(y, θ)

)
sin θ

)
, (A.10)

−W ≤ y ≤ W, − θ̃ + Φx0
− (y) ≤ θ ≤ θ̃ + Φx+0

+ (y). (A.11)

In the cylindrical polar coordinate system that describes the liquid-vapour interface, ẑ =

sin θr̂ + cos θθ̂, so that the volume contribution from the surface integral (A.3) over the

liquid-vapour interface is

V̂VLV
=

∫ W

y=−W

∫ θ̃+Φ
x0
+ (y)

θ=−θ̃+Φ
x0
− (y)

(
R+F x0(y, θ)

)
sin θ(sin θr̂+ cos θθ̂) · N̂

∣∣∣∣
∂gLV

∂y
× ∂gLV

∂θ

∣∣∣∣ dθ dy,

(A.12)
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where on the liquid-vapour interface,

N̂ =
(R + F x0)r̂ − F x0

θ θ̂ − (R + F x0)F x0
y ŷ

L
, (A.13)

, with L ≡
√
(R + F x0)2(1 + F x0

y
2) + F x0

θ
2. After linearising, the expansion to O(ϵ) is

V̂VLV
=

∫ W

y=−W

∫ θ̃+ϵΘ
x0
+ (y)

θ=−θ̃+ϵΘ
x0
− (y)

R2 sin2 θ + ϵR sin θ

(
2fx0(y, θ) sin θ − cos θ

∂fx0(y, θ)

∂θ

)
dθ dy

= 2R2W (− cos θ̃ sin θ̃ + θ̃)

+ ϵR

∫ W

−W

∫ θ̃

−θ̃

− sin θ

(
cos θ

∂fx0(y, θ)

∂θ
− 2fx0(y, θ) sin θ

)
dθ dy

− ϵR2 sin2 θ̃

∫ W

−W

(
Θx0

− (y)−Θx0
+ (y)

)
dy. (A.14)

So to O(ϵ), the total volume of vapour is given by V̂V = V̂V+ + V̂V− + V̂VLV
. Using the fact

that 2R sin θ̃ = 1, and using integration by parts on the fx0
θ term in the integral over θ yields

V̂V = 2W

(
R cos θ̃

2
+R2θ̃ + x0

)
+ ϵR

∫ W

−W

∫ θ̃

−θ̃

f(y, θ) dθ dy

+ ϵ

∫ W

−W

∫ x0+R cos θ̃)

0

(b+(x, y)− b−(x, y)) dx dy. (A.15)

A.3 The volume condition

We find the volume condition by imposing V̂c = V̂V + V x0
L . At O(1), this gives the equation

for the liquid volume (2.1),

V x0
L = 4WL− 2Wx0 −RW cos θ̃ − 2WR2θ̃. (A.16)
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Meanwhile at O(ϵ), we obtain the volume constraint (2.18):

∫ W

−W

∫ θ̃

−θ̃

fx0(y, θ) dθ dy =
1

R

∫ W

−W

∫ 2L

x0+R cos θ̃

(b+(x, y)− b−(x, y)) dx dy. (A.17)

Appendix B Iterating to a minimum energy configu-

ration in Surface Evolver

The technical details presented here are based on the material given in Brakke (1994).

Evolver iterates through configurations of vertices X to minimise the total energy E(X)

of the surface subject to the constraints described above; without gravitational energy, this

is just the surface energy so Evolver works to minimise the area of the wetted surface. The

iteration step reduces the energy whilst obeying any imposed constraints.

Each iteration causes a small perturbation ∆X to the configuration of vertices X. The

resulting energy is approximated by a multivariate Taylor expansion:

E(X +∆X) = E(X) +GT∆X +
1

2
(∆X)TH∆X, (B.1)

where G is the gradient and H is the Hessian, and superscript T denotes transpose. The

gradient term gives the best linear approximation to the energy of the perturbed surface,

whilst the second term gives the best quadratic approximation.

The simplest mode of iteration in Surface Evolver is a linear gradient-descent method

that applies a force to each vertex which is proportional to the negative gradient of energy

−GT . However, if the quadratic approximation 1
2
(∆X)TH∆X is very close to the equilib-

rium then it is possible to find the equilibrium by solving for ∆X such that GT∆X = 0.

This requires ∆X = −H−1G, so the Hessian matrix H needs to be invertible. The Newton-

Raphson iteration to find such a ∆X is handled internally by Surface Evolver. This method

requires the surface to be close enough to the equilibrium that the quadratic approximation
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is valid. There is an alternative method that tries to minimize energy along the direction

found by Newton’s method using the Hessian, which can be used when the surface is much

further from equilibrium.

The form of the quadratic term indicates the stability of configuration; the surface is at a

local minimum if H is positive definite. Moreover, the eigenvectors and eigenvalues of H can

also be used to check stability: the eigenvectors can be thought of as modes of perturbation

of a surface, so negative eigenvalues lead to the growth of perturbations (because the force

is the negative of the energy gradient).

Appendix C Finite difference matrix system

We show the matrix system for solving the linearised model as described in §3.2 for a very
simplified case where M = N = 1. The system takes the form Af = b where A is a matrix
of size ((M + 2)(N + 2) + 1) × ((M + 2)(N + 2) + 1), and f and b are vectors of length
(M+2)(N+2)+1. We first show the matrix A of the coefficients of the discretised equations

with L =
(

1
R2 − 2 1

R2
1

∆θ2
− 2 1

∆y2

)
and a = sin θ̃, b = cos θ̃:

A =




a − b
( −3

2∆θ

)
(−b)

(
2

∆θ

)
(−b)

( −1
2∆θ

)
| 0 0 0 | 0 0 0 | γ0

0 −3
2∆y

0 | 0 2
∆y

0 | 0 −1
2∆y

0 | 0

b
(

1
2∆θ

)
b
(−2

∆θ

)
a + b

(
3

2∆θ

)
| 0 0 0 | 0 0 0 | γ2

0 0 0 | a − b
( −3

2∆θ

)
(−b)

(
2

∆θ

)
(−b)

( −1
2∆θ

)
| 0 0 0 | γ0

0 1
∆y2 0 | 1

R2
1

∆θ2
L 1

R2
1

∆θ2
| 0 1

∆y2 0 | γ1

0 0 0 | b
(

1
2∆θ

)
b
(−2

∆θ

)
a + b

(
3

2∆θ

)
| 0 0 0 | γ2

0 0 0 | 0 0 0 | a − b
( −3

2∆θ

)
(−b)

(
2

∆θ

)
(−b)

( −1
2∆θ

)
| γ0

0 1
2∆y

0 | 0 −2
∆y

0 | 0 3
2∆y

0 | 0

0 0 0 | 0 0 0 | b
(

1
2∆θ

)
b
(−2

∆θ

)
a + b

(
3

2∆θ

)
| γ2

1 2 1 | 2 4 2 | 1 2 1 | 0




.

(C.1)

Here,

γ0 = sin θ̃ cos(θ0)− cos θ̃

(−3 cos θ0 + 4 cos θ1 − cos θ2
2∆θ

)
, (C.2)

γ1 =
1

R2∆θ2
(cos θ0 + cos θ2) +

(
2

∆y2
+ L

)
cos θ1, (C.3)

γ2 = sin θ̃ cos(θ2) + cos θ̃

(
cos θ0 − 4 cos θ1 + 3 cos θ2

2∆θ

)
. (C.4)



The effect of bumps on static menisci in channels

The first and last block rows contain the coefficients of the discretised Neumann boundary

conditions, (3.8) and (3.9) respectively, the middle block row contains the coefficients of

the discretised Helmholtz equation (3.5) and the first and last rows of each block row con-

tain the coefficients of the discretisation of the Robin boundary conditions, (3.6) and (3.7)

respectively.

The vector f is

f =

[
f 0
0 f 0

1 f 0
2 f 1

0 f 1
1 f 1

2 f 2
0 f 2

1 f 2
2 λ

]T
. (C.5)

The vector b is

b =

[
Kx0

− (0) 0 K+x0(0) K−x0(∆y) px0 K+x0(∆y) K−x0(2∆y) 0 K+x0(2∆y) V x0

]T
,

(C.6)

where

Kx0
± (y) = ±b±(x0 +R cos θ̃, y)∓R cos θ̃

∂b±
∂x

∣∣∣∣∣
(x0+R cos θ̃,y)

. (C.7)



Appendix

3.A An alternative implementation of the Surface

Evolver solution

In the problem described in Chapter 3 we implement the Surface Evolver solution

by meshing the perturbed walls. As Brakke (1994) explains, evolving with facets

constrained on a curved wall is difficult in Surface Evolver due to trying to fit the

facets to a curved constraint, and issues with refining. Thus we might anticipate

that our solution does not work well for larger amplitude or sharper perturbations.

To avoid these problems, and to increase computational efficiency, we can instead

only mesh the liquid-vapour interface. That is, the upper and lower perturbed walls

(z = ±1/2 + B±(x, y)), the side walls (y = ±W ) and the end wall (x = 0) are not

meshed. However we still need to account for the energy and volume contributions

associated with these surfaces. We do this by calculating the energy and volume

contributions via a line integral and performing this integration around oriented edges

which are specified by the user. The result is added on to the total energy/volume of

the surface.

Accounting for the energy of the missing facets

First we consider the energy associated with the removed surfaces. We write the

surface energy integral as

∫∫

S

− cos(αw) dA =

∫∫

S

− cos(αw)v̂ · v̂ dA, (3.A.1)

where, as in Chapter 3, v̂ is the outward pointing unit normal to the wetted surface S.

We now wish to write this as a line integral using Stokes’ Theorem: for a solenoidal

100
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Figure 3.A.1: Sketch showing the orientation of the line integral around the wetted
surface of the upper wall S+, together with the orientation of the outward-pointing
unit normal v̂+. The function w+ is integrated around the red edges in the direction
indicated by the arrows.

vector u,

∫∫

S

− cos(αw)u · v̂ dA =

∫∫

S

− cos(αw)(∇×w) · v̂ dA =

∮

∂S

− cos(αw)w · dr,

(3.A.2)

where w is a vector field that has continuous first-order partial derivatives in a region

containing S. Thus we first need a u such that u · v̂ = 1 and ∇ · u = 0 on S. Then

we find a w such that ∇×w = u. We are free to choose any w which satisfies these

constraints, however the resulting function w cannot contain any singularities on S or

its boundary.

To find the specific w required, we consider each surface in turn. Firstly, on the

side walls and the end walls, the contact angle is αw = π/2 so there are no energy

contributions from these walls. Next we consider the upper and lower wetted surfaces

S±, where z = ±1/2+B±(x, y). We definew± = wx±x̂+wy±ŷ+wz±ẑ. The integration

region for the upper wall is shown in figure 3.A.1. The outward-pointing unit normal

to the upper and lower channel walls is:

v̂± = ± 1√
1 +

(
∂B±
∂x

)2
+
(

∂B±
∂y

)2

(
−∂B±

∂x
x̂− ∂B±

∂y
ŷ + ẑ

)
. (3.A.3)

Therefore, we need a u± = ux±x̂ + uy±ŷ + uz±ẑ and a w± = wx±x̂ + wy±ŷ + wz±ẑ
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such that

ux±

(
∓∂B±

∂x

)
+ uy±

(
∓∂B±

∂y

)
+ uz±(±1) = ±

√
1 +

(
∂B±
∂x

)2

+

(
∂B±
∂y

)2

,

(3.A.4)

∂ux±
∂x

+
∂uy±
∂y

+
∂uz±
∂z

= 0, (3.A.5)

(
∂wz±
∂y

− ∂wy±
∂z

)
= ux±,

(
∂wx±
∂z

− ∂wz±
∂x

)
= uy±,

(
∂wy±
∂x

− ∂wx±
∂y

)
= uz±

(3.A.6)

We have thus far not been able to find a u and w satisfying this system with w having

no singularities. Some examples of solutions that we considered are detailed below.

3.A.1 Radially axisymmetric perturbations

If we assume the perturbations on the upper and lower walls are radially axisymmetric

then a w with a singularity at the centre of the bump can be found. The isolated

Gaussian bump perturbations described in Chapter 3 are radially axisymmetric about

x = x±
c , y = y±c . Therefore, it is convenient to work in cylindrical polar coordinates

x = xc + ρ sinφ, y = yc + ρ cosφ, z = z so that the upper and lower walls are given

by z = ±z0 + B±(ρ). Then the outward unit normal to the upper and lower channel

walls is:

v̂± = ± 1√
1 +B2

±ρ

(
−dB±

dρ
ρ̂+ ẑ

)
. (3.A.7)

Thus we can take

u± = ±
√

1 +

(
dB±
dρ

)2

ẑ. (3.A.8)

To find the correspondingw± for the upper and lower walls, we then solve for∇×w± =

u± in cylindrical polar coordinates. Thus, we solve

1

ρ

(
∂(ρw±φ)

∂ρ
− ∂w±ρ

∂φ

)
= ±

√
1 +

(
dB±
dρ

)2

. (3.A.9)

We are free to choose w±φ = 0 which allows us to integrate analytically. We obtain

w± = ∓ρφ

√
1 +

(
dB±
dρ

)2

ρ̂. (3.A.10)
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Transforming back to Cartesian coordinates and defining bump-centred coordinates

X = x− xc, Y = y − yc, this vector is

w± = ∓ arctan

(
X

Y

)√
1 +

(
∂B±
∂X

)2

+

(
∂B±
∂Y

)2

(Xx̂+ Y ŷ), (3.A.11)

which we integrate around the edges enclosing the upper and lower perturbed walls,

0 ≤ x ≤ x±(y;x0), −W ≤ y ≤ W , with x±(y;x0) the contact line location. However

this function is singular at X = Y = 0 which is at the centre of the bump. As shown

in figure 3.A.2(a, b), this method works when the meniscus is far away from the bump

and thus the method can be validated for a large portion of the domain. However we

cannot compute contact line solutions as the contact line approaches the top of the

bump, because the integrand becomes singular. A minimum energy solution satisfying

all the boundary conditions cannot be computed as shown in figure 3.A.2(c, d).

To avoid the singluarity, we could introduce a branch cut so that we perform keyhole

contour integration around the centre of the bump, as shown in figure 3.A.3, and add

the resulting contribution onto the energy of the surface. However, this is difficult to

implement in Surface Evolver as the integration requires knowledge of the location of

the contact line which is unknown. Moreover, the branch cut solution allows us to

compute solutions up to the bump on each side of the bump, but we cannot compute

contact lines that lie over the top of the bump. Finally, the aim is to eventually use the

code to caluclate solutions for offset and scattered bump perturbations which may not

be radially axisymmetric, therefore this solution would no longer be straightforward

to implement.

3.A.2 Taylor series approximation for small-amplitude per-

turbations

Another approach is to approximate the magnitude of the normal vector, that is, the

right hand side of (3.A.4), by the first two terms of a Taylor expansion for small-

amplitude perturbations so that a solution can be found. When the amplitude of the

bump perturbations B±(x, z) is small so that B±(x, z) = ϵb±(x, z) with ϵ ≪ 1, the

right hand side equation (3.A.4) is approximated by

±
√

1 +

(
∂B±
∂x

)2

+

(
∂B±
∂y

)2

≈ ±
{
1 +

ϵ2

2

(
∂b±
∂x

)2

+ ϵ2
(
∂b±
∂y

)2
}
. (3.A.12)
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(a) x+(y), x0 +R cos θ̃ = 0.25 (b) x+(y), x0 +R cos θ̃ = 0.25

(c) x−(y), x0 +R cos θ̃ = 0.995 (d) x−(y), x0 +R cos θ̃ = 0.995

Figure 3.A.2: Contact line solutions for a bump at x = 1. Panels (a)–(b) and (c)–(d)
show solutions for unperturbed contact lines far away from and close to the bump
respectively. The blue star denotes the centre of the bump. In panels (a) and (b) the
black dashed line denotes 75% of the maximum amplitude of the bump whereas in
panels (c) and (d) it is a contour at 99.5% of the maximum bump amplitude. The
black and red lines denote the linear and Surface Evolver solutions respectively. The
channel width is W = 5, the amplitude of the bump is ϵ = 2 and the width of the
bump is s = 0.25, with contact angle ϕ = 85◦.
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Figure 3.A.3: Sketch showing keyhole contour integration on the upper wall to avoid
the singularity at the centre of the bump, together with the orientation of the bump-
centred coordinates. The function w+ given in (3.A.11) is integrated around the edges
in the direction shown by the arrows.

Therefore, we require a u = ux±x̂+ uy±ŷ + uz±ẑ such that

ux±

(
∓∂B±

∂x

)
+ uy±

(
∓∂B±

∂y

)
+ uz±(±1) = ±

{
1 +

ϵ2

2

(
∂b±
∂x

)2

+ ϵ2
(
∂b±
∂y

)2
}
.

(3.A.13)

We can take

ux = 0, uy = 0, uz = 1 +
ϵ2

2

(
∂b±
∂x

)2

+ ϵ2
(
∂b±
∂y

)2

, (3.A.14)

Then using (3.A.6) this leads to, for example,

wx = −
∫ {

1 +
ϵ2

2

(
∂b±
∂x

)2

+ ϵ2
(
∂b±
∂y

)2
}

dy, (3.A.15)

where

b±(x, y) ∝ exp

(
−(x− x±

c )
2

s
− (y − y±c )

2

s

)
, (3.A.16)

so that the solution is given in terms of error functions and exponentials. We use

an approximation of the error function from Abramowitz and Stegun (1948). For
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0 ≤ X < ∞,

erf(X) ≈ 1− (a1t+ a2t
2 + a3t

3 + a4t
4 + a5t

5) e−X2

+ ε(X), (3.A.17)

where

t =
1

1 + pX
, |ε(X)| ≤ 1.5× 10−7, p = 0.3275911, (3.A.18)

a1 = 0.254829592, a2 = −0.284496736, a3 = 1.421413741, (3.A.19)

a4 = −1.453152027, a5 = 1.061405429. (3.A.20)

However, this solution also did not work in our implementation; we believe that this

is because the approximation to the energy is not sufficiently accurate for the scales

involved. We have not had time to experiment with more accurate approximations.

Accounting for the volume of the missing facets

As described in Chapter 3, the volume contribution is first written as an integral over

the wetted surface S by using the divergence theorem:

V x0
L =

∫∫∫

V
x0
L

1 dV =

∫∫∫

V
x0
L

∇ · F dV =

∫∫

S

F · v̂ dA, (3.A.21)

To write this integral as a line integral using Stokes theorem, we first need to find a

solenoidal vector u such that F · v̂ = u · v̂ on S where F = xx̂.

So firstly on the upper and lower perturbed wetted surfaces S±, in Cartesian co-

ordinates, the outward-pointing unit normal to the wetted surface is given by

v̂± = ± 1√
1 +B2

±x
+B2

±y

(
−∂B±

∂x
x̂− ∂B±

∂y
ŷ + ẑ

)
. (3.A.22)

Therefore, choosing

u± = x
∂B±
∂x

ẑ (3.A.23)

satisfies the above conditions. We then find a w± such that ∇ ×w± = v±. Thus, if

w± = w±xx̂+ w±y ŷ + w±z ẑ, we solve
(
∂w−y

∂x
− ∂w−x

∂y

)
= x

∂B−
∂x

= −2ϵ x(x− x−
c ) exp

(
−(x− x−

c )
2

s
− (y − y−c )

2

s

)
,

(3.A.24)
(
∂w+y

∂x
− ∂w+x

∂y

)
= x

∂B+

∂x
= −2aϵ x(x− x+

c ) exp

(
−(x− x+

c )
2

s
− (y − y+c )

2

s

)
.

(3.A.25)
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We choose w±x = 0 then we obtain

w− = aϵ exp

(
−(y − y−c )

2

s

){
x exp

(
−(x− x−

c )
2

s

)
−

√
π

2
erf(x− x−

c )

}
ŷ, (3.A.26)

w+ = ϵ exp

(
−(y − y+c )

2

s

){
x exp

(
−(x− x+

c )
2

s

)
−

√
π

2
erf(x− x+

c )

}
ŷ, (3.A.27)

where again we use the approximation from Abramowitz and Stegun (1948) to compute

the error function in Surface Evolver. We integrate w± around the upper and lower

perturbed walls.

The wetted surfaces S±W on the side walls (y = ±W ) do not contribute to the

volume constraint as the normal to these walls is ±ŷ, so that F · ±̂ŷ = ±xx̂ · ŷ = 0.

The end wall also does not contribute to the volume integral as x = 0 on this surface,

so that F = 0. Therefore we do not need to consider contributions from these walls.

This method for calculating the volume associated with the missing facets presents

no problems and can be implemented without issue. However it cannot be used without

also being able to account for the energy of the missing facets as explained in §3.A.1,

§3.A.2.



Chapter 4

Free-stream coherent structures in

the unsteady Rayleigh boundary

layer

The work for this paper was started towards the end of my MSci year at Imperial

College London, was continued during postgraduate research at Monash University,

Melbourne and was completed during my studies at the University of Manchester. A

very early draft of the asymptotic work for the basic flow and the production layer (sec-

tions 2-3) was submitted as part of my MSci and can therefore not be examined here.

The work presented for examination is the asymptotic analysis of the adjustment-layer

solution (Section 4), the results (Section 5) and the discussion (Section 6), together

with the introduction (Section 1). The paper has a self-contained introduction, dis-

cussion, appendices and bibliography. It appears as:

E. C. Johnstone and P. Hall (2020). “Free-stream coherent structures in the un-

steady Rayleigh boundary layer”. IMA J. Appl. Math. 85.6, pp. 1021–1040.

Statement of Contributions

EJ derived the model, performed the asymptotic analysis and the numerical compu-

tations, created the figures and wrote the paper. PH suggested the initial problem,

provided guidance on the asymptotic analysis and numerical computations (particu-

larly on the scalings in each layer) and provided editorial suggestions.
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Results are presented for nonlinear equilibrium solutions of the Navier–Stokes equations in the boundary
layer set up by a flat plate started impulsively from rest. The solutions take the form of a wave–roll–streak
interaction, which takes place in a layer located at the edge of the boundary layer. This extends previous
results for similar nonlinear equilibrium solutions in steady 2D boundary layers. The results are derived
asymptotically and then compared to numerical results obtained by marching the reduced boundary-
region disturbance equations forward in time. It is concluded that the previously found canonical free-
stream coherent structures in steady boundary layers can be embedded in unbounded, unsteady shear
flows.

Keywords: transition to turbulence, unsteady transition, boundary layer stability.

1. Introduction

There are fundamental differences in the instability and transition processes in steady and unsteady
flows. The asymptotic description of nonlinear equilibrium solutions of the Navier–Stokes equations,
which has been suggested gives an insight into transition in shear flows, has previously only been
conducted in the context of steady flows. We present results for nonlinear equilibrium solutions in the
unsteady boundary layer set up by a flat plate moved impulsively from rest, hereafter referred to as the
Rayleigh problem.

The solutions we are interested in are equilibrium solutions of the Navier–Stokes equations as fixed
points or periodic orbits for shear flows. Their underlying physics is very similar to that described by
vortex–wave interaction (VWI) theory (Hall & Smith, 1991): a streak is unstable to a 3D wave that
interacts with itself in a critical layer to produce a roll via Reynolds stresses. This roll then drives the
streak, resulting in a ‘self-sustaining process’ (Waleffe, 1997). These types of solutions, which are often
referred to as ‘exact coherent structures’, have been found both numerically and asymptotically in the
high Reynolds number limit for a range of steady flows (see, e.g. Faisst & Eckhardt, 2003; Waleffe 2001,
2003; Wedin & Kerswell, 2004; Wang et al., 2007, Hall & Sherwin, 2010, Deguchi & Hall 2014a).

However, the solutions discussed here differ from the exact coherent structures because the roll–
streak interaction takes place in a layer that sits just below the free stream. This layer is termed as
the ‘production layer’ by Deguchi & Hall (2014b), who first observed these ‘free-stream coherent
structures’ in parallel asymptotic suction boundary layer (ASBL) flow, and replaces the traditional
critical layer in VWI theory that sits in the boundary layer.

© The Author(s) 2020. Published by Oxford University Press on behalf of the Institute of Mathematics and its Applications. All rights reserved.
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1022 E. C. JOHNSTONE AND P. HALL

Deguchi & Hall (2014b) solve the full Navier–Stokes equations within the production layer as a
nonlinear eigenvalue problem of unit Reynolds number; this solution then motivates an asymptotic
description of the flow above and below the layer. Above the layer, all disturbances decay, while below
the layer the interaction of the perturbation with the background flow produces a streak disturbance
that grows exponentially below the layer via a nonlinear interaction between the roll and the mean flow,
before obtaining its maximum size in the near-wall boundary layer. The existence of the structures relies
upon the fact that the background state is of boundary-layer form and that in the production layer the
difference between the streamwise velocity and the free-stream speed is exponentially small, which
allows the nonlinear interaction to take place. The key implication is that streak disturbances seen at the
wall could have their origin much further away.

Free-stream coherent structures have since been described in a wide range of general steady shear
flows such as the Burger’s vortex sheet (Deguchi & Hall, 2014a); spatially growing 2D boundary layers
such as Blasius flow (Deguchi & Hall, 2015); and planar jets (Deguchi & Hall, 2018). The asymptotic
description of free-stream coherent structures in the Rayleigh problem is very similar to those described
by Deguchi & Hall (2015) for spatially growing 2D boundary layers that approach their free-stream form
exponentially. They show that the production layer problem for these flows can, remarkably, be reduced
to exactly that of the ASBL flow, albeit with local values of the wavenumbers. However, below the
production layer, non-parallel effects came into play to give a rich asymptotic structure comprising two
‘adjustment layers’ and an irrotational layer connected by diffusion fronts. These curves arise due to the
coalescing of different Wentzel–Kramers–Brillouin (WKB) phases. As in the ASBL problem, the streak
disturbance grows exponentially beneath the production layer towards the wall but this time obtains
its maximum in the lower adjustment layer where the WKB amplitude is a minimum. The asymptotic
results for large Reynolds numbers agree well with numerical solutions of the parabolic boundary-region
equations for the disturbance.

We now describe free-stream coherent structures in the unsteady boundary layer arising from a
flat plate set in impulsive motion from rest. The importance of unsteady effects on the stability of time-
dependent flows has been studied for a wide range of problems, including an impulsively started rotating
cylinder (Chen & Christensen, 1967); time-dependent rotational Couette flow (Kirchner & Chen, 1970);
and the flow around a cylinder immersed in a fluid that is impulsively spun up (Otto, 1993). Of particular
interest is the reconciliation of the onset of transition in unsteady flows with predictions of instability
from linear stability analysis; Moss (1992) showed that for impulsively started pipe flow the onset
of transition occurs at lower Reynolds numbers than linear predictions of instability. The effect of
unsteadiness on the onset of transition and instability is attributed to an upstream travelling turbulent
front leading to finite-amplitude disturbances.

Even for slowly-varying flows that can be studied using a quasi-static approach, the stabilizing
effect of the quasi-static assumption is often not enough to overcome instabilities arising from the
time-dependent nature of the flow (Seminara & Hall, 1975; Shen, 1961; Von Kerczek & Davis, 1974).
Unsteady effects have been shown to be particularly important in the linear stability of the Stokes
problem (an impulsively started flat plate in oscillatory motion), which is governed by unstable Floquet
modes (and non-Floquet modes appear at high Reynolds numbers) (Cowley, 1987; Hall, 1978, 2003;
Von Kerczek & Davis, 1974); when unsteady effects are amplified, such as a skewed acceleration of the
plate, the problem becomes linearly unstable at lower Reynolds number (Thomas, 2020). Unsteadiness
also changes the nature of the route to turbulence for the Stokes problem through the presence of a
finite-time singularity and the growth of 3D disturbances interacting with 2D waves using a critical
layer approach (Wu, 1992; Wu et al., 1993). In fact, Wu et al. (1993) link the unsteady critical-layer
approach and the VWI theory of Hall & Smith (1991) in the context of a linear disturbance evolving to

D
ow

nloaded from
 https://academ

ic.oup.com
/im

am
at/article/85/6/1021/5919894 by U

niversity of M
anchester user on 27 January 2022



FREE-STREAM COHERENT STRUCTURES IN RAYLEIGH FLOW 1023

an unsteady critical-layer type interaction, and then further evolving into a VWI-type state. It has been
suggested that these VWI states, i.e. the exact and free-stream coherent structures described above, are a
key building block of shear-flow transition processes; for a more complete discussion of this suggestion,
the reader is referred to Jiménez (2018) and the introduction by Deguchi & Hall (2015). Therefore, a key
implication of the problem discussed in this paper is that there may be a connection between transition
in steady and unsteady flows.

The unsteady boundary-region equations that appear in this paper are also discussed by Ricco
et al. (2011) where they are found to govern the evolution of streaky boundary-layer disturbances
from unsteady free-stream turbulence. Unlike the case for steady disturbances, streaky boundary layers
generated by unstable disturbances are inviscidly unstable, and thus boundary layer transition can occur
without separation (Goldstein & Sescu, 2008). The unsteady boundary-region equations considered in
this paper are reduced, through a suitable transformation, to the well-known Görtler vortex equations of
Hall (1983) with zero Görtler number; these also appear as the governing equations for 3D boundary-
layer perturbations in the problem studied by Luchini (1996). Their numerical solution is discussed
thoroughly by Hall (1983); for extensive numerical studies of more complex nonlinear boundary-region
equations the reader is referred to Martin & Martel (2012) and Sescu & Afsar (2018).

Little is known about the stability of fluid flows with a general time dependence; the meaning of
stability is not clear when the magnitude of the basic flow changes over time. That being said, using
the assumptions of Hall & Parker (1976) and Cowley (1987) that quasi-steady flow is justified at high
Reynolds number with a fast convective time scale, then Rayleigh flow may be considered quasi-steady;
indeed the time dependence of the free-stream coherent structure problem is absorbed in the similarity
variable so that instantaneously the flow sees the disturbance as steady. Under this assumption, it could
be suggested that there exists a similar mechanism for the transition process in steady and quasi-steady
flows.

In this paper, we apply the approach of Deguchi & Hall (2015) for spatially growing boundary layers
to the Rayleigh problem. The study of the unsteady problem is motivated by the Gaussian approach of
the unperturbed flow to its free-stream form. Deguchi & Hall (2014b) show that for the ASBL problem
this approach actually needs to be an exponential function of distance from the wall. We show that
the unsteadiness in the Rayleigh problem can mimic the suction of ASBL flow to force the flow to
instantaneously decay with the required exponential behaviour using a scaled variable.

We see that through an appropriate transformation the production-layer problem can be reduced
to exactly the ‘parallel’ problem of ASBL flow through the introduction of a similarity variable that
captures the time dependence of the problem. However, as with the spatially developing case, below
the layer unsteady effects come back into play, and the problem has to be considered instantaneously
at each time step, with instantaneous values of the frequency and wavenumbers. This gives rise to a
complex asymptotic structure due to the changing dominance of the different WKB solutions; however,
it also means that full numerical simulations would be very computationally demanding. This is not
necessary, however, as the results of the locally parallel nonlinear eigenvalue problem of Deguchi & Hall
(2014b) can be used to determine the instantaneous wavenumbers at each time step, thereby allowing
the parabolic boundary-region equations to be marched forward in time to give a comparison to the
analytical results. The procedure adopted for the rest of this paper is as follows: in §2 we outline the
problem for Rayleigh flow before the production layer problem is derived in §3 and the flow beneath the
production layer is described in §4. In §5, numerical results are computed. In §6, a general discussion
of our results in the context of existing research is given, as well as comments on further questions to be
explored.
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1024 E. C. JOHNSTONE AND P. HALL

2. The basic flow for the Rayleigh problem

Consider a viscous flow with viscosity ν above an infinitely long flat plate at y∗ = 0 with respect to
Cartesian co-ordinates (x∗, y∗, z∗). At time t∗ = 0, the plate is impulsively set into motion and continues
moving with constant velocity −U1, where the sign is chosen to allow an easier comparison to the
Deguchi & Hall (2014b) ASBL problem. Therefore, if the velocity of the flow is u∗ = (u∗, v∗, w∗), then
the boundary conditions are u∗ → (0, 0, 0) a long way from the plate, and u∗ = (−U1, 0, 0) at the plate.
Taking τ as a typical time scale for the development of the flow, the width of the boundary layer that
forms on the plate surface is found to be

√
ντ . If we non-dimensionalize using this length scale and U1

as a typical flow speed, the Reynolds number of the problem is found to be Re = U1
√

τ/ν. Then, the
equations of motion describing the non-dimensional flow field are

1
Re ut + (u · ∇)u = −∇p + 1

Re∇2u, (2.1)

∇ · u = 0. (2.2)

For the Rayleigh problem, the flow is uniform in the x-direction as the plate is moving with constant
speed and there is no velocity in the spanwise direction. Hence, the flow is transient but only changes
in the y-direction. Under these assumptions, the high-Reynolds-number equations of motion reduce to
ut = uyy, where subscript represents partial derivative. This equation can be solved via the introduction

of a similarity variable η = y(2t)−1/2, where the scaling is chosen for convenience, so that we seek
solutions in the form u = ū(η). Thus, we solve

ū′′ + ηū′ = 0, ū(0) = −1, ū(∞) = 0, (2.3)

where prime denotes derivative, to find that

ū = erf(η/2) − 1. (2.4)

Therefore, at large values of η, i.e. as the free-stream is approached, the streamwise velocity is given by

u(t, y) ≈ −A0η
−1e−η2/2 = −A0y−1

√
2te−y2/4t, (2.5)

where A0 = √
2/π .

3. The production layer problem

If the Reynolds number is large, the equations of motion allow for other solutions including the free-
stream coherent structures described in Deguchi & Hall (2014b). The production layer, where the
nonlinear interaction that produces the structures takes place, is completely distinguished from the near-
wall boundary layer. In this layer, waves, rolls and streaks interact in a self-sustaining manner to produce
a coherent structure that is convected downstream with almost the free-stream speed. The interaction of
the roll flow and the mean flow enables the streak disturbance to grow exponentially beneath the layer.
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3.1 Free-stream coherent structures in parallel boundary-layer flows

We will show that we are able to reduce the production-later problem for the unsteady Rayleigh flow
to the production layer problem for parallel ASBL flow. Therefore, in order to give some context to
the results for free-stream coherent structures in the Rayleigh problem, we shall very briefly summarize
the results of Deguchi & Hall (2014b) for the canonical parallel ASBL problem. These were described
completely in that paper and summarized in Deguchi & Hall (2015), therefore only a brief description
shall be given here.
ASBL flow is a viscous flow over an infinitely long flat plate; the basic flow is therefore independent
of x and z with respect to Cartesian co-ordinates (x, y, z). The plate has small perforations where a low
pressure gradient is maintained so the fluid is sucked downwards through the plate at constant velocity.
The suction forces a parallel boundary layer on the plate surface. The basic flow is given by

ub = (ub, −Re−1, 0) = (1 − e−y, −Re−1, 0), (3.1)

with the Reynolds number Re based on the free-stream speed and the unperturbed boundary-layer
thickness. If we perturb the flow at high Reynolds numbers we find a nonlinear interaction taking place
in a layer located at Y = y − ln Re. This layer is situated just below the free-stream and the structure
created is convected downstream with speed differing from the free-stream speed by O(Re−1) so that the
wave dependence in the layer is defined as X = x − ct, c = 1 − Re−1c1 + · · · . The equations describing
the interaction form a nonlinear eigenvalue problem at unit Reynolds number for the wavespeed c1 and
are given by

([U + c1 î] · ∇)U = −∇P + ∇2U; ∇ · U = 0, (3.2)

where U = (U, V , W) and P are the perturbation velocity and pressure scaled on Re−1 and Re−2,
respectively. This system is to be solved subject to boundary and periodicity conditions given by

U → (0, −1, 0) as Y → ∞; U → (−e−Y , −1, 0) as Y → −∞,

U (X, Y , Z) = U (X + 2π/α, Y , Z) , U(X, Y , Z) = U (X, Y , Z + 2π/β) . (3.3)

Here, α and β are the streamwise and spanwise wavenumbers, respectively. The key point to notice here
is that the boundary condition as Y → −∞ allows for the possibility of higher-order X-independent
terms of U to grow exponentially beneath the production layer, although the growth would be at a
slower rate than the leading order growth ∼ e−Y . Below the layer the disturbance field adjusts to become
compatible with the basic flow, therefore this layer is termed the ‘adjustment layer’. In order to analyse
the growth of the higher-order terms in the adjustment layer, the flow is split into its mean flow, vortex
and wave components. The mean flow is the average in X and Z of the flow, while the vortex component
is the average in X of the disturbance only. The streak is the vortex component of U and the roll is the
vortex component of (V , W). The equations for the leading order vortex components are then Fourier
analysed to yield the form of the solution beneath the production layer:

U → −e−Y + J1e(ω1−1)Y cos(2βZ) + . . . ; V → −1 + K1eω1Y cos(2βZ) + . . . , (3.4)
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1026 E. C. JOHNSTONE AND P. HALL

where K1 = K1(α, β) is to be found as part of the numerical eigenvalue problem in the production layer
and

ω1 = (

√
1 + 16β2 − 1)/2 > 0, J1 = −K1/2ω1. (3.5)

Hence, we see that exponential growth of the streak only occurs for spanwise wavenumbers in the range
β < 1/

√
2. It is found that as the wall is approached, where all disturbances must ultimately be reduced

to zero, the streak disturbance takes its maximum within the unperturbed near-wall boundary layer.
Thus the crucial conclusion is that a nonlinear interaction in the free-stream involving a velocity field
of size O(Re−1) can produce a much larger streak disturbance that is felt most strongly in the boundary
layer, away from the production layer where it is generated. It should be noted that the wave and roll
field decay below the production layer as the self-sustaining mechanism, which provides the forcing to
the roll flow via the Reynolds stresses associated with the wave, is localized in the production layer.
Numerical results at finite Reynolds number shown in Deguchi & Hall (2014b) agree well with the
asymptotic theory shown above.

3.2 The production layer problem for Rayleigh flow

The free-stream coherent structures in ASBL flow described in §3.1 owe their existence to the fact that
the basic flow approaches its free-stream form through an exponential function of distance from the wall.
Deguchi & Hall (2015) show that an arbitrary 2D spatially developing boundary layer, which instead
approaches its free-stream form via an exponential function of the square of distance from the wall
(Brown & Stewartson, 1965), can also support the structures through an appropriate transformation that
forces the decay to be of the required form locally around the production layer. This effect of boundary-
layer growth is crucial to the interaction mimicking the ASBL structure in the production layer. We
shall see that the same holds true of the Rayleigh problem, but with unsteady effects replacing the
effect of boundary layer growth. We first find the location and scalings required to define the nonlinear
eigenvalue problem to be solved in the production layer for the Rayleigh problem, and then show how
this can be transformed into the canonical production-layer problem (3.2)–(3.3) in §3.1.

3.2.1 Location and scalings

We seek a structure that is periodic in the streamwise and spanwise directions, with wavenumbers α0 and
β0, respectively. It is located in a layer of unknown thickness δp situated at an unknown distance K from

the wall; the layer is situated just below the free-stream so K 
 1. Writing y(2t)−1/2 = K+δpỸ(2t)−1/2,
we see that for large K, in order for the flow to decay locally as a function of exponential distance from
the wall, we must take δp = K−1. In this case,

u ≈ −A0K−1e−K2/2e−Ỹ/
√

2t. (3.6)

We now fix K by considering a balance of terms in the streamwise momentum equation. Previous work
by Deguchi & Hall (2014b, 2015) has shown that the free-stream coherent structures in the production
layer are nonlinear wave structures with wavelengths comparable to the boundary layer scale. Therefore,
with respect to the scaling for y in the production layer and the boundary-layer scalings in §2, the
structure will operate in a cube of sides length δp = K−1 within the viscous production layer. The
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FREE-STREAM COHERENT STRUCTURES IN RAYLEIGH FLOW 1027

nonlinear terms and viscous terms will thus balance if

1

K
exp

[−K2

2

]
= K2

Re
⇒ K ≈ √

2 ln Re. (3.7)

We now restrict any streamwise dependence to be in the form of a wave moving downstream with almost
the free-stream speed; because the boundary-layer is growing in time, the wavespeed must also change
in time. If the streamwise wavelength is also to remain comparable with the depth of the layer and the
convective balance ∂t + u∂x ∼ O(K2/Re) is to be maintained, then in the production layer we write

Φ̃ = Kα0

[
x − K

∫ t

c(t̃) dt̃

]
,

y√
2t

= K + Ỹ

K
√

2t
, Z̃ = Kz. (3.8)

Here α0 is the streamwise wavenumber, which is constant because the base flow of Rayleigh problem
is not spatially dependent. Therefore, unlike the growing boundary layer problem studied in Deguchi
& Hall (2015), where local streamwise wavenumbers α0(x) were defined in terms of the (non-zero)
free-stream speed U1(x), there are no difficulties if the free-stream speed is zero. We also note that if
c(t) is constant then the phase variable Φ̃ reduces to the wave dependence seen in ASBL flow in §3.1.
The scalings for the velocity field can be found by considering the continuity equation (2.2). We find
u ∼ v ∼ w ∼ O(KRe−1), then the pressure must be O(K2Re−2) to be kept in play, so we seek a solution
in the form

u = KRe−1Ũ(t, Φ̃, Ỹ , Z̃), p = K2Re−2P̃(t, Φ̃, Ỹ , Z̃). (3.9)

We substitute this expansion into the equations of motion (2.1) and (2.2) to find the nonlinear eigenvalue
problem for the instantaneous wavespeed to be solved in the production layer:

[(
Ũ − c(t)î − 1√

2t
ĵ
)

· ∇̃
]

Ũ = −∇̃P̃ + ∇̃2Ũ, (3.10)

∇̃ · Ũ = 0, (3.11)

where ∇̃ = (α0∂Φ̃ , ∂Ỹ , ∂Z̃) and ∇̃2 = α2
0∂2

Φ̃
+ ∂2

Ỹ
+ ∂2

Z̃
, and the equations are to be solved subject to

boundary conditions

Ũ → 0 as Ỹ → ∞, (3.12a)

Ũ → −A0e−Ỹ/
√

2t as Ỹ → −∞, (3.12b)

and periodicity conditions

(Ũ, P̃)(t, Φ̃, Ỹ , Z̃ + 2π/β0) = U(t, Φ̃, Ỹ , Z̃), (3.13a)

(Ũ, P̃)(t, Φ̃ + 2π , Ỹ , Z̃) = U(t, Φ̃, Ỹ , Z̃), (3.13b)

where β0 is the spanwise wavenumber. It is of crucial importance to notice the (2t)−1/2∂Ỹ term in the
momentum equation (3.10); this represents a ‘suction-like’ effect that has been produced by unsteady
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1028 E. C. JOHNSTONE AND P. HALL

effects in the boundary layer. The portion of the flow travelling closest to the wall is subject to this
suction-like effect that serves to thicken the velocity profile. The effect here gets weaker as time
increases, and hence forces the production-layer flow to be quasi-steady.

3.4 Reduction to the ASBL production layer problem

The problem above looks similar to the nonlinear eigenvalue problems (3.2)–(3.3) described in §3.1 for
ASBL flow. Indeed, if we consider the transformation

Φ̃ = α0

√
2tΦ, Ỹ = √

2t
[
Y + ln(A0

√
2t)

]
, Z̃ = √

2tZ,

c = −c1/
√

2t(Ũ, Ṽ , W̃, P̃) = (
√

2t)−1(U, V + 1, W, P), (3.14)

then (3.10)–(3.13) become exactly the ASBL nonlinear eigenvalue problems (3.2)–(3.3) but with time-
dependent values of the effective wavenumbers α = α0

√
2t and β = β0

√
2t (we note that the

wavenumbers for the Rayleigh problem are constant). This means that at each timestep, solutions of
the Rayleigh problem can be extracted by using the solution of the ASBL problem with instantaneous
values of α and β at that time. This allows a significant computational reduction as rather than having
to solve for a slowly varying time-dependent eigenvalue c(t), only the steady eigenvalue problem needs
to be solved to be able to determine the unsteady solution. The steady (parallel) problem was solved for
a range of values of α and β in Deguchi & Hall (2014b).

3.5 The roll–streak flow exiting the production layer

The roll–streak flow exiting the production layer for ASBL flow is given by (3.4). Using the
transformation above and the production-layer scalings (3.9), for the Rayleigh problem, we see that
the roll–streak flow exiting the production layer is given by

u → −A0
K

Re
e−y/

√
2t + K

Re

J1√
2t

e(ω1−1)y/
√

2t(
√

2tA0)
(1−ω1) cos(2Kβ0z) + . . . , (3.15)

v → K

Re

K1√
2t

eω1y/
√

2t(
√

2tA0)
−ω1 cos(2Kβ0z) + . . . , (3.16)

where J1, K1 and ω1 are functions of the instantaneous effective spanwise wavenumber β and
are therefore updated at each time step. From (3.4), for growth in ASBL flow the local spanwise
wavenumber must satisfy omega1 − 1 < 0, or equivalently, β < 1/

√
2 at each time step. Therefore

for a given β0, the length of time for which growth occurs in the Rayleigh problem is specified by
β0

√
2t < 1/

√
2. Hence, the free-stream coherent structures only produce an exponentially growing

streak for a finite time. We also note that as with the ASBL problem, above the production layer, the
wave, roll and streak all decay and the flow returns to its free-stream value given by (3.12a), as with
no forcing the self-sustaining mechanism breaks down away from the critical layer that produces the
Reynolds stresses. Finally we now see that if we had taken the velocity at the plate to be (U1, 0, 0) in §2
rather than (−U1, 0, 0) then we would change the sign of the streamwise velocity in (3.12b). Although
the physics of the problem would be unchanged, the transformation to the ASBL problem in Deguchi &
Hall (2014b) would be more complex.
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FREE-STREAM COHERENT STRUCTURES IN RAYLEIGH FLOW 1029

Fig. 1. The structure beneath the production layer for the unsteady problem showing the diffusion fronts, over which the WKB
phase changes. Characteristics emanate from the initial point of forcing (t, ξ) = (1, 1).

4. The adjustment layer problem

We now turn our attention to what happens beneath the production layer as the disturbance produced by
the nonlinear interaction in the production layer interacts with the mean flow. For the ASBL problem
this is relatively simple: the streak grows exponentially all the way down to the unperturbed boundary
layer, where it is ultimately reduced to zero to satisfy the wall conditions. For the Rayleigh problem,
we find that the solution is much more complicated and takes on a structure related to that found for
spatially growing flow by Deguchi & Hall (2015). This is because beneath the production layer the
unsteady effects, which could be forced to act in a quasi-steady manner in the production layer, come
back into play. This leads to a rich asymptotic structure with two adjustment layers and an irrotational
layer separated by diffusion fronts that arise when different WKB phase solutions become dominant;
see Fig. 1. From the three layers we can form a composite solution by matching the solution across the
diffusion fronts. We first derive the boundary-region equations, valid from the wall to the production
layer, and then solve them using the WKB method. We find that the forcing from the solution exiting the
production layer (region a in Fig. 1) dominates in an upper adjustment layer (region b) above a diffusion
front C (region c), which arises due to a singularity from the onset of production-layer forcing. Below
this curve a different WKB phase dominates in a lower adjustment layer (region d). The solution then
becomes singular leading to a second diffusion front D (region e), below which the flow is irrotational
(region f).

4.1 The boundary-region equations

We first find the equations describing the interaction between the production-layer solution and the
basic flow and which are to be solved between the wall and the production layer. We decompose the
flow field (u, v, w) into its basic flow, vortex and wave components to analyse how the disturbances
exiting the production layer interact with the mean flow. The vortex component of u is called the streak
flow (subscript s), and the vortex components of v and w are called the roll flow (subscript r). So if
ub = (ub(t, y), 0, 0) is the basic flow in the unperturbed boundary layer, then the flow is disturbed by
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1030 E. C. JOHNSTONE AND P. HALL

the production layer forcing as

(u, v, w) = [ub + us cos(2Kβ0z), Re−1vr cos(2Kβ0z), Re−1wr sin(2Kβ0z)], (4.1)

p = Re−2pr cos(2Kβ0z). (4.2)

We note that the spanwise wavenumber of the perturbation is taken to be β0 to allow matching with the
solution exiting the production layers (3.15)–(3.16). We then find that the linearized boundary-region
equations for the disturbance are

∂

∂t

⎡
⎣

us
vr
wr

⎤
⎦ + vr

∂

∂y

⎡
⎣

ub
0
0

⎤
⎦ =

⎡
⎣

0
−∂pr/∂y
2Kβ0pr

⎤
⎦ +

(
∂2

∂y2 − 4K2β2
0

) ⎡
⎣

us
vr
wr

⎤
⎦ , (4.3)

∂vr

∂y
+ 2Kβ0wr = 0. (4.4)

These equations are parabolic in t and can therefore be solved by integrating in y over the region from
the wall to the production layer then marching forwards subject to boundary conditions at the wall and
the production layer and an initial velocity imposed at some initial value of t. Without loss of generality,
it is assumed that the production-layer forcing begins at t = 1. We also note that the wavenumbers
are dependent on t and so the problem must be solved with instantaneous values of the wavenumbers.
Considering the production-layer scalings (3.8), we now introduce a scaled variable ξ = y/K

√
2t and

seek a solution where ξ = O(1). To enable matching with the solution exiting the production layers
(3.15)–(3.16), we also adopt the production-layer scalings (3.9) for the roll–streak flow so that

(us, vr, wr, pr) = (KRe−1Us, KVr, KWr, K2Pr). (4.5)

Then, the basic flow (2.5) becomes ub ≈ A0KRe−1ξ−1e−K2(ξ2−1)/2, so that the equation for us in (4.3)
becomes

K−2
[
K−2∂2

ξ + ξ∂ξ − 2t
(
∂t + 4K2β2

0

)]
Us − A0

√
2tVre−K2(ξ2−1)/2 = 0. (4.6)

The second equation for the roll–streak field can be found by eliminating the pressure pr and spanwise
disturbance velocity wr from (4.3) and (4.4) to give

[
K−2∂2

ξ + ξ∂ξ − 2t
(
∂t + 4K2β2

0

)]
Vr = 0, (4.7)

where

Vr = [K−2∂2
ξ − 2t(4K2β2

0 )] [Vr(2t)−1/2]. (4.8)

The equations (4.6)–(4.7) are solved subject to the boundary conditions

u → −A0
K

Re
e−K2(ξ−1) + K

Re

J1√
2t

e(ω1−1)K2(ξ−1)(A0

√
2t)(1−ω1) cos(2Kβ0z) + . . . , (4.9)
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v → K

Re

K1√
2t

eω1K2(ξ−1)(A0

√
2t)−ω1 cos(2Kβ0z) + . . . . (4.10)

as ξ → ∞. The roll–flow equation (4.7) suggests that we use the WKB method to find Vr; this solution
can then be used to find Vr and Us from (4.8) and (4.6), respectively. Wr can be then be found from the
continuity equation (4.4).

4.2 The WKB solution in the upper adjustment layer

We now find the solution in the upper adjustment layer, region (b) in Fig. 1. We seek a WKB solution
for Vr in the form

Vr = K2V (t, ξ , K)eK2θ(t,ξ), (4.11)

with V being the amplitude and θ being the phase in the usual notation. Substitution into the roll–flow
equation (4.7) yields

[
θξξ + ξθξ − 2t

(
θt + 4β2

0

)]
V +

[
K−4Vξξ + K−2

(
2Vξ θξ + ξVξ + V θξξ − 2tVt

)]
= 0. (4.12)

So at high Reynolds numbers, i.e. as K → ∞, the leading order terms give the eikonal equation for the
phase,

θξξ + ξθξ − 2t
(
θt + 4β2

0

)
= 0, (4.13)

while at the next order the terms of order K−2 give an equation for the amplitude. The forcing from the
production layer initially diffuses into the adjustment layer through the phase function θ , therefore we
initially consider the eikonal equation (4.13). This is a nonlinear partial differential equation and can be
solved using Charpit’s method of characteristics. Defining p̂ = θt and q̂ = θξ , we seek a solution to
F(p̂, q̂, θ , t, ξ) = 0. The Charpit equations for the eikonal equation (4.13) are

dt

2t
= dξ

−(2q̂ + ξ)
= dp̂

−(2p̂ + 8β2
0 )

= dq̂

q̂
= dθ

2p̂ − q̂(2q̂ + ξ)
= dζ , (4.14)

subject to the initial Cauchy data

ζ = 0, θ0(s) = p̂0(s) = 0, q̂0(s) = ω1(s), V = V0(s) on t0(s) = s, ξ0(s) = 1 for s ≥ 1, (4.15)

where s is the parametrization of the initial data, ζ is the parametrization of the characteristics and

V0(s) = K1(2t)−1(A0

√
2t)−ω1 [ω2

1 − 2t(4β2
0 )] (4.16)

from (4.8) and (4.10). We note that Fp̂t′0 − Fq̂ξ
′
0 = 0 (where prime represents derivative) and therefore

the initial data are never tangent to the solution surface; that is to say, the integrability condition is
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1032 E. C. JOHNSTONE AND P. HALL

satisfied and thus the characteristics will not cross away from ζ = 0. Solving the Charpit equations
(4.14) yields the solution

t = se2ζ , q̂ = ω1(s)e
ζ , p̂ = 4β2

0 [e−2ζ − 1], ξ = [1 + ω1(s)]e
−ζ − ω1(s)e

ζ ,

θ =
[

1 − e2ζ

2

]
[2s(4β2

0 ) + ω2
1(s)],

∂2θ

∂ξ2
= −e2ζ

1+ω1(s)
ω1(s)

+ e2ζ
, V = V0(s)

√
B(s) + 1

B(s) + e2ζ
, (4.17)

where B(s) = (1 + ω1(s))/ω1(s). For each value of s we can find an explicit solution for θ(t, ξ). This
solution is valid for t > 1 where the production layer forcing begins. The characteristic emanating from
that point separates what we shall define as the upper adjustment layer from the rest of the flow beneath
the production layer. The limiting characteristic is at s = 1 and is given by

ξ̄ (t) = [1 + ω1(1)]t−1/2 − ω1(1)
√

t; (4.18)

the corresponding amplitude on this characteristic is given by

V = V̄ (t) = V0(1)
√

(B(1) + 1)(B(1) + t)−1 = V +. (4.19)

To continue the solution below the upper adjustment layer, we stipulate that all characteristics must now
pass through the singular point of initial forcing (t, ξ) = (1, 1).

4.3 The WKB solution in the lower adjustment layer

We seek a solution in the lower adjustment layer (region d in Fig. 1) to the Charpit equations (4.14)
subject to the initial data

ζ = 0, p̂0(s) = 0, θ0(s) = 0, q̂0(s) = q̂0(s) at t = 1, ξ = 1 for s ≥ ω1(1). (4.20)

We can think of this as the initial data, which was previously parametrized along t, degenerating into
a point in the (t, ξ) plane. We therefore continue the initial data curve in θξ as this carries the information
about how the phase changes along each characteristic curve in the lower adjustment layer. We again
solve the Charpit equations to give

eζ = √
t, q̂ = q0(s)

√
t, p̂ = 4β2

0 [t−1 − 1], ξ = 1 + q0(s)√
t

− q0(s)
√

t,

θ = [q0(s)
2 + 2(4β2

0 )]

[
1 − t

2

]
,
∂2θ

∂ξ2 = −t

t − 1
, V = g(s)

1√
e2ζ − 1

, (4.21)

where g(s) is some as yet unknown function as we cannot prescribe initial data on V at the singular
point. We note that q0(s) can be eliminated to give an explicit solution for θ(t, ξ).

4.4 The WKB solution in the first transitional layer

The solutions for θξξ in (4.17) and (4.21) do not match at the limiting characteristic ξ̄ given by (4.18).
Therefore we introduce a diffusion front C to smooth out this discontinuity, shown by region (c) in
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FREE-STREAM COHERENT STRUCTURES IN RAYLEIGH FLOW 1033

Fig. 1. Mathematically, this diffusion front arises as the two different WKB phases of the roll–flow
equation (4.7) meet. The thickness of the transitional layer is fixed by observing that because only θξξ is
discontinuous across the layer, upon passing through the layer the exponential dependence must change
by a factor

exp[K2(ξ − ξ̄ )2(θ̄+
ξξ − θ̄−

ξξ )/2] = exp[K2(ξ − ξ̄ )2J/2], (4.22)

where plus and minus represent the upper and lower adjustment layer solutions, and the overbar denotes
a quantity evaluated on C , so ξ is thus O(K−1). Thus in the diffusion front we look for a WKB solution
of the form

Vr = K2V C(t, φ)eK2θC(t,φ,K), φ = K(ξ − ξ̄ )/Δ, Δ = √
2/J, (4.23)

where superscript C represents the Taylor-series expansion truncated at O(ξ2) around the limiting
characteristic ξ = ξ̄ . In this layer the higher order terms of the roll–flow equation (4.12), which
were previously ignored, are reintroduced to smooth out the discontinuity. After some manipulation
(for further details see Deguchi & Hall, 2015), we find that

V C = V̄ (t)(erf(φ) + 1)/2, (4.24)

where V̄ (t) is given in (4.19). Then we can find the full solution in the lower adjustment layer; by
matching with the solution in the lower adjustment layer (4.21)g, we obtain

g(s) = −V0(1)/[K
√

2π(s − ω1(1))]. (4.25)

Thus we find that in the lower adjustment layer the amplitude is given by

V = V0(1)
√

t − 1

K
√

2π [ξ
√

t − 1 + ω1(1)(t − 1)]
= V −, (4.26)

with V0(1) given by (4.16). So in particular, we see that the amplitude falls by a factor of K−1 when
crossing the diffusion front C .

4.5 The roll–streak flow in the upper and lower adjustment layers

The roll and streak flows can now be found from (4.7) and (4.6), respectively. We obtain

Vr =
√

2tV eK2θ

θ2
ξ − 2t(4β2

0 )
, Us = −A0ξ

−1
√

2t

2θξ

e− K2
2 (ξ2−1)Vr, (4.27)

where in the upper adjustment layer θ and V are as given in (4.17), whereas for the lower adjustment
layer θ is as given in (4.21) and V is as given in (4.26). We see that this solution becomes singular when
s = √

2(2β0). This corresponds to a second limiting characteristic

ξ = 1 + 2
√

2β0√
t

− 2
√

2β0

√
t ≡ ξ(t). (4.28)
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4.6 The WKB solution in the second transitional layer

To smooth out the singularity we introduce a second diffusion front D , which separates the upper and
lower adjustment layers from the rest of the flow (region e in Fig. 1). Mathematically this curve arises
because the homogeneous terms of the WKB solution have become as large as the inhomogeneous
terms. Again the thickness of the layer is defined by insisting that the second-derivative amplitude terms
in (4.7) are as large as the phase terms; once again this requires that the layer is of thickness O(K−1).
Thus in the diffusion front we seek a WKB solution of the form

Vr = VD(t, ϕ)eK2θD(t,ϕ,K); ϕ = K(ξ − ξ)/δ(t), δ(t) =
√

−2/θ−
ξξ , (4.29)

where θD is the Taylor expansion truncated at O(ξ2) of the phase (4.21) in the lower adjustment layer.
By considering the limiting form of VD, we can obtain a match with the lower adjustment layer solution.
We find that the amplitude of the roll in D is given by

VD = Vieϕ2
[

erf(ϕ) − 1

2

]
, (4.30)

where

Vi(t) = − V0(1)

4β0[2
√

2tβ0 − ω1(1)
√

t]
. (4.31)

So in particular, we see that the amplitude is once again O(1); i.e. the amplitude grows by a factor K
across the second diffusion layer.

4.7 The WKB solution in the irrotational layer

Beneath D the flow is irrotational because the forcing from the production layer cannot reach this part
of the flow. By again using the roll–streak equations (4.6) and (4.7), we find that the streak and roll
flows in this irrotational layer are given by

Vr = −Vi(t)eK2θ i(t,ξ), Us = −
√

2tA0e− K2
2 (ξ2−1)Vr

2ξθ i
ξ

, (4.32)

where

θ i(t, ξ) = 2(4β2
0 )(1 − t) + 2

√
2τβ0(ξ − ξ). (4.33)

4.8 The full composite roll–streak solution

We now combine the solutions from each of the three layers, along with the limiting solutions from each
diffusion front, to produce a composite solution for the phase that is valid for the entire flow beneath
the production layer. We define the composite solution so that under taking the logarithm it becomes
(inner solution) + (outer solution) - (common part). Firstly, the WKB phase solution θ is continuous
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everywhere beneath the production layer and is defined as

θ =

⎧
⎪⎨
⎪⎩

θ+ from (4.17) ξ ≥ ξ̄ ,

θ− from (4.21) ξ̄ > ξ ≥ ξ ,
θ i from (4.33) ξ < ξ .

(4.34)

Then, to smooth out the singularities of the amplitude when crossing the lower adjustment layer, we
define a composite solution for the roll flow in terms of the limiting forms as

Vr =

⎧
⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

V C

V C∞
V D

V D∞

√
2tV +eK2θ

θ2
ξ −2t(4β2

0 )
from (4.19) ξ ≥ ξ̄ ,

V C

V C−∞
V D

V D∞

√
2tV −eK2θ

θ2
ξ − 2t(4β2

0 )
from (4.26) ξ̄ > ξ ≥ ξ ,

−V C

V C−∞
V D

V D−∞
Vi(t)e

K2θ i(t,ξ) from (4.31) ξ < ξ .

(4.35)

The limiting forms V C∞, V C−∞, V D∞ and V C−∞ are the limits as φ → ±∞ and ϕ → ±∞ of (4.24) and
(4.30), respectively. The roll flow then completely defines the streak flow as

Us = −A0ξ
−1

√
2t

2θξ

e− K2
2 (ξ2−1)Vr, (4.36)

where θ is defined in each layer by (4.34). Then Wr can be found from the continuity equation (4.4).

4.9 The location of the streak maximum

The streak flow in each layer, given by (4.36) for each θ as in (4.34), has exponential dependence with
argument K2(θ −ξ2/2−1/2). This exponential dependence dominates the size of the streak. Therefore,
defining M = M(t, ξ) = K2(θ − ξ2/2 − 1/2), the streak maximum occurs where Mt = Mξ = 0. Thus,
using the eikonal equation (4.13), we find that the streak maximum occurs where

ξ = 2β0

√
t; 2β0 = 1

2t − 1
. (4.37)

Thus, the maximum of the streak occurs in the lower adjustment layer, i.e. ξ̄ > ξM ≥ ξ . This means that
the maximum occurs well after the onset of forcing, and far away from the wall at ξ = 0. Hence, the
streak structure is more dominant in the lower adjustment layer where ξ = O(1) than in the unperturbed
main boundary layer where ξ = O(K−1). Surprisingly, this is the layer where the WKB amplitude is a
minimum. This is because the dominant forcing from the production layer occurs through the phase.

5. Numerical results

We now present numerical solutions of the boundary-region equations (4.3)–(4.4) and compare them
against the composite solution (4.35)–(4.36) found in §4. To calculate the numerical solution of the
boundary-region equations (4.3)–(4.4), we march the equations forward in time from an initial condition,
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1036 E. C. JOHNSTONE AND P. HALL

subject to boundary conditions at the wall and at the production layer. At each time step we evaluate the
boundary conditions (3.15)–(3.16) using the instantaneous value of K1(α, β) given by the solution of
the numerical eigenvalue problem for ASBL flow, (3.2)–(3.3), solved for a range of (α, β) in Deguchi &
Hall (2014b). Here we recall α and β are the instantaneous wavenumbers α = α0

√
2t, β = β0

√
2t. We

solve for values of β lying between the left and right saddle nodes of the numerical eigenvalue solutions
from Deguchi & Hall (2014b) for the production layer problem; taking the left saddle node to correspond
to t = 1, this then fixes a time interval on which to compute the solution and thus also fixes the range of
spanwise wavenumbers β. We find that there is good agreement between the asymptotic results and the
numerical solutions. The boundary-region equations (4.3) are parabolic and therefore, given values of
the Reynolds number and the spanwise wavenumber, can be solved numerically by marching forwards
in time subject to initial forcing from the production layer. Following Hall (1983) we first rearrange the
boundary-region equations (4.3)–(4.4) and eliminate the pressure and spanwise velocity disturbances to
give a fourth-order equation for the roll flow vr and a second-order equation for the streak flow us. Then,
after writing the equations in terms of the similarity variable η = y/

√
2t, the equations are discretized in

η using a second-order-accurate central finite-difference scheme. We then use a second-order-accurate
Crank–Nicholson scheme to march the equations forward in time. We use a step size of h = 10−3 in
the t direction, and a grid of 2000 points in the η direction. We apply an initial condition us = vr = 0 at
t = 1 for all η. At the wall we apply no-slip and impenetrability, so that us = vr = ∂vr/∂y = 0 at η = 0.
At the production layer, corresponding to η = K, we apply the boundary conditions (3.15)–(3.16) and
no-slip.

In Fig. 2 we present results for the numerical solution for Re = 104, 107 and 1010. In Figs 2b, 2c
and 2e we show the streak part of the numerical solution of the boundary-region equations, together
with the limiting characteristics shown in Fig. 1. In addition we show the asymptotic prediction of the
streak maximum in t and ξ given by (4.37). We see that as the Reynolds number increases the numerical
results agree increasingly well with the asymptotic results; this is shown by the observed maximum of
the numerical solution falling increasingly close to the predicted location of the maximum of M in t
and ξ , marked by a black diamond (�). The numerical solution also improves over long times as the
Reynolds number increases; for Re = 104 there is some error at larger values of t; however, here the
expansion parameter K used is only approximately 4. However, in all cases, the numerical solution has
captured the predicted overall flow structure; i.e. O(Re−1) interactions taking place in the production
layer produce a large amplitude streak appearing in the boundary layer, albeit for a finite time. In Figs 2b,
2d and 2f we show the disturbance streamwise velocity in the y − z plane at the predicted time for the
streak maximum to occur from (4.37). We see that the location of the predicted streak maximum agrees
increasingly well with the numerical results as the Reynolds number is increased. We also clearly see
the streak, having grown away from the production layer, obtaining its maximum well away from the
production layer where it was generated.

6. Discussion

We have shown that free-stream coherent structures can exist in unsteady Rayleigh boundary-layer flow.
The structures were mathematically similar to those derived in Deguchi & Hall (2015), with the flow
unsteadiness replacing non-parallel effects. An O(Re−1) nonlinear interaction in a layer situated just
below the free-stream, where disturbances were convected with almost free-stream speed, produced
a disturbance involving rolls, waves and streaks. The streak part of this disturbance interacted with the
basic flow in the main part of the boundary layer and continued to grow through the ‘lift-up‘ mechanism,
adjusting to the non-parallel nature of the basic flow via continuation through two transitional layers
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FREE-STREAM COHERENT STRUCTURES IN RAYLEIGH FLOW 1037

Fig. 2. The numerical solution for Re = 104 (a, b), 107 (c, d) and 1010 (e, f). (a, c, e): the streak part of the solution −us.
The black dashed lines are the upper and lower limiting characteristics ξ̄ and ξ from (4.18) and (4.28), respectively. The white
line corresponds to the predicted location of the maximum of M in t and ξ from (4.37), with the corresponding time marked by
a black diamond (�). The white dashed line is ξ = 1 (at the production layer). (b, d, f): the disturbance streamwise velocity
−us cos(2Kβ0z) at the predicted time of the streak maximum, t ≈ 2.21. The black dashed line is the predicted location of the
maximum of M in ξ at this time. The white dashed line is ξ = 1.
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1038 E. C. JOHNSTONE AND P. HALL

where discontinuities were smoothed to produce a composite solution. The streak maximum was
predicted to be in the lower of the two adjustment layers. The asymptotically reduced boundary-
region equations were then solved numerically via a Crank–Nicholson time-marching scheme. The
numerical results were found to be in increasingly good agreement with the predicted asymptotic results
as the Reynolds number was increased. In particular, as the Reynolds number was increased, the streak
maximum in the numerical solution appeared earlier, in better agreement with the asymptotic prediction.

Unsteady flows are ubiquitous in nature and have many applications in engineering and science.
The unsteadiness is mainly classed as non-periodic, e.g. the sudden opening and closing of valves in
a flow through a pipe system or periodic, e.g. a turbine blade rotating through water. The Rayleigh
problem studied here is non-periodic, but the laminar flow allows a similarity solution. Experimental
results for transition to turbulence in non-periodic unsteady flows by Mathur et al. (2018) have shown
that if the flow is persistently accelerated the critical Reynolds number associated with transition
increases. In addition, for periodic unsteadiness flows or flows where the unsteadiness is changing,
e.g. by acceleration, the flow history is important: the way in which instantaneous flow behaves is based
on past history. In light of those results variations on the Rayleigh problem in which the quasi-steady
approximation is not valid would provide interesting areas of further study. These include an oscillating
flat plate (Stokes’ second problem), and a flat plate accelerated uniformly from rest. The first of these
has an analytic solution for the basic flow that approaches its free-stream value through an exponentially
small correction so it could be particularly interesting to study in light of the results above. However,
since it is not exponential throughout the main boundary layer, the interaction of a streak disturbance
with the basic flow could be very different and may not support growth.

We also note here that we have not solved the unsteady production layer problem; such solutions,
if they exist, could be used to analyse the small-time development of the problem studied here. We
have not gone into detail here on the solution at the immediate point of forcing, when a singularity
occurs. Here, the characteristics described in §4 pile up and a shock in the solution occurs. However,
since the maximum of the streak disturbance occurs in the adjustment layer well away from the initial
forcing at t = 1, it is anticipated that nothing new would be learnt about the solution by examining this
region. Nevertheless, for a periodic or accelerating unsteadiness where, as discussed above, flow history
is important, the shock at the initial point of forcing could have great implications at later times.

Laminar Rayleigh flow is often used to show how vorticity spreads in a boundary layer. The basic
flow and the vorticity both satisfy the heat equation for the conduction of heat on a semi-infinite rod. In
the context of fluid flow, the wall becomes a plane source of vorticity and the Rayleigh problem shows
how fluid momentum is diffused away from the plate, with the region affected by viscosity (i.e. the
boundary layer) growing in time; we earlier showed the width of the boundary layer to be ∼ √

νt. In
addition, one can show that the shear stress at the wall decays as t−1/2. With the free-stream coherent
structures we now have high levels of vorticity entering the boundary layer from the free stream. It
would be interesting to examine the interaction of the basic underlying vorticity field with the vorticity
originating in the production layer; this could be done asymptotically in a similar manner to the problem
described above.

The flat plate studied in this problem was infinitely long and therefore the free-stream coherent
structures found were independent of the point x from the flow was viewed. An interesting problem
to study further would be that of a semi-infinite flat plate moving with constant unit velocity. For
time t < x, where x is the distance measured downstream from the leading edge, Rayleigh flow is
observed. However beyond that point the flow is radically different; at t = x the disturbance at the
leading edge begins to affect the flow and for t → ∞, Blasius flow is observed. Therefore we have
a remarkable situation where an x-independent, time-dependent flow can smoothly change (this is a
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FREE-STREAM COHERENT STRUCTURES IN RAYLEIGH FLOW 1039

physical requirement) into a time-independent, x-dependent flow. There are conflicting explanations
as to how this occurs; Smith (1972) and Stewartson (1951) claim that it occurs through an essential
singularity, whereas Tokuda (1968) claims that the solution can be found without a singularity through
the use of stretched variables. The question of how the free-stream coherent structures develop at this
point is particularly intriguing; in particular, whether the transition point could provide any forcing to
sustain the structures past the point where no growth occurs in these results.
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As a first step towards the description of coherent structures in compressible shear
flows, we present an asymptotic description of nonlinear travelling-wave solutions of the
Navier–Stokes equations in the compressible asymptotic suction boundary layer (ASBL).
We consider free-stream Mach numbers M∞ in the subsonic and moderate supersonic
regime so that 0 � M∞ � 2. We extend the large-Reynolds-number asymptotic theory of
Deguchi & Hall (J. Fluid Mech., vol. 752, 2014, pp. 602–625) describing ‘free-stream’
coherent structures in incompressible ASBL flow to describe a nonlinear interaction in a
thin layer situated just below the free stream. Crucially, the nonlinear interaction equations
for the velocity field in this layer are identical to those obtained in the incompressible
problem, and thus the asymptotic analysis supporting free-stream coherent structures in
compressible ASBL is easily deduced from its incompressible counterpart. The nonlinear
interaction produces streaky disturbances to both the velocity and temperature fields,
which can grow exponentially towards the wall. We complete the description of the growth
of the velocity and thermal streaks throughout the flow by solving the compressible
boundary-region equations numerically. We show that the velocity and thermal streaks
obtain their maximum amplitude in the unperturbed boundary layer. Increasing the
free-stream Mach number enhances the thermal streaks and suppresses the velocity
streaks, whereas varying the Prandtl number suppresses the velocity streaks, and can either
enhance or suppress the thermal streaks depending on whether the flow is in the subsonic
or moderate supersonic regime. Such nonlinear equilibrium states have been implicated
in shear transition in incompressible flows; therefore, our results indicate that a similar
mechanism may also be present in compressible flows.
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1. Introduction

It has been known since Kline et al. (1967) that transitional and turbulent flows exhibit
clear structure within the boundary layer in the form of vortical structures coupled to
high- and low-speed streaks in the plane perpendicular to the unperturbed flow. Recent
understanding of these structures has been aided by the identification of three-dimensional,
nonlinear invariant solutions of the Navier–Stokes equations which may take the form
of equilibria, periodic orbits or travelling-wave solutions. These states, now commonly
known as exact coherent structures, have been found in a wide range of canonical shear
flows where the key parameter governing the dynamics is the Reynolds number; see,
for e.g. Faisst & Eckhardt (2003), Waleffe (2001, 2003), Wedin & Kerswell (2004) and
Wang, Gibson & Waleffe (2007). The study of exact coherent structures in two-parameter
space has previously only been conducted in the context of stably stratified flows (Eaves &
Caulfield 2015; Deguchi 2017; Lucas & Caulfield 2017; Lucas, Caulfield & Kerswell 2017;
Olvera & Kerswell 2017), where it is shown that the Prandtl number plays a key role in the
structure of the states found (Langham, Eaves & Kerswell 2020).

The present work is confined to a special type of coherent structure in asymptotic
suction boundary-layer (ASBL) flow, in which a parallel, streamwise-invariant basic flow
is maintained via constant suction far from the leading edge. In the incompressible case,
Hocking (1975) showed that the flow is linearly stable up to a Reynolds number of
54 370; Fransson & Alfredsson (2003) subsequently showed experimentally that transition
could occur at much lower Reynolds numbers. It has been very recently shown that
it is possible to experimentally realise a turbulent ASBL (Ferro, Fallenius & Fransson
2021). Several three-dimensional, fully nonlinear invariant solutions of the Navier–Stokes
equations have been identified in incompressible ASBL flow. Periodic-orbit-type solutions
have been obtained by Kreilos et al. (2013) and Khapko et al. (2013) via edge tracking.
Travelling-wave-type solutions have also been identified in the ASBL by Deguchi &
Hall (2014), who found structures localised in the wall-normal direction but periodic in
the streamwise and spanwise directions, and by Kreilos, Gibson & Schneider (2016),
who found spanwise-localised travelling-wave solutions. In both cases, two types of
solution were found: a ‘wall mode’ coherent structure with the streaks and vortex structure
concentrated near the wall region; and a ‘free-stream’ coherent structure with the streak
flow still mainly concentrated in the near-wall region but with the vortical structure
residing in the free stream.

Deguchi & Hall (2014) showed that the spanwise-periodic wall modes could be
described by high-Reynolds-number vortex–wave interaction theory (Hall & Smith 1991;
Hall & Sherwin 2010), in which forcing in the critical layer of the wave drives a roll
flow which produces a streak; the streaky flow is then itself unstable to the wave.
This tripartite interaction is also known as a self-sustaining process (Waleffe 1997).
Meanwhile, the free-stream coherent structures can be described by a distinct asymptotic
theory which relies on the exponential approach of the boundary-layer flow to its
free-stream form. A nonlinear interaction between tiny waves, rolls and streaks satisfies the
unit-Reynolds-number three-dimensional Navier–Stokes equations within a ‘production’
layer, which is located at the edge of the free stream and which is of the same depth
as the unperturbed boundary layer. The nonlinear production-layer interaction allows a
streak disturbance to the velocity field to grow exponentially beneath the production layer.
An analysis of the induced roll–streak flow shows that the streak obtains its maximum
size in the near-wall boundary layer. This high-Reynolds-number asymptotic framework
to describe free-stream coherent structures has subsequently been extended to non-parallel
(Deguchi & Hall 2015, 2018) and unsteady (Johnstone & Hall 2020) flows.
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Free-stream coherent structures in compressible shear flows

Free-stream turbulence is known to play a key role in boundary-layer transition
(Fransson, Matsubara & Alfredsson 2005; Fransson & Shahinfar 2020). It is hypothesised
that free-stream coherent structures may play a key role in linking the coherent structures
observed in the inner region (near-wall region of intense turbulence production) and outer
(large-scale, less active) regions of boundary-layer flow (Deguchi & Hall 2014). This detail
would be particularly relevant in the context of jet acoustics for compressible flows, when
disturbances originating in the free stream may be implicated in the high frequency sound
often referred to as ‘screeching’ which is observed in high-speed jet flows (Deguchi &
Hall 2018).

There has been little work, however, into the asymptotic description of coherent
structures in the context of compressible flows despite the importance of transitional
and turbulent compressible flows to many industrial problems, particularly in the fields
of aerospace engineering and acoustics. Past experimental and numerical studies have
focused on laminar–turbulent transition in compressible boundary layers in the context of
the effect of free-stream vortical disturbances, with particular focus on bypass transition
(see, for e.g. Laufer 1954; Kendall 1975; Demetriades 1989; Graziosi & Brown 2002;
Mayer, von Terzi & Fasel 2011). By extending the incompressible theory of Leib,
Wundrow & Goldstein (1999), Ricco & Wu (2007) show that free-stream vortical
disturbances can induce temperature fluctuations that lead to the formation of ‘thermal
streaks’; the growth of these streaks is enhanced at larger free-stream Mach numbers,
although nonlinear effects were found to inhibit the growth of the streaks (Marensi, Ricco
& Wu 2017). Short-wavelength free-stream vortical disturbances have also been found to
concentrate in the ‘edge layer’ Wu & Dong (2016), which is akin to the production layer
for free-stream coherent structures described above.

However, the organised streaky structures observed experimentally in incompressible
flows have been identified in supersonic compressible flows both experimentally (for
a thorough review see Spina, Smits & Robinson 1994) and numerically (Pirozzoli,
Bernardini & Grasso 2008; Ringuette, Wu & Martín 2008). The structures found are
consistent with the hairpin loop model of wall turbulence, with low-speed, elongated
streaks observed in the logarithmic region. Thus there exists compelling evidence for the
similarity between compressible and incompressible coherent structures. Indeed, the main
effect of compressibility in turbulent shear boundary layers lies in the density fluctuations
(Morkovin 1962), and it is generally accepted that for moderate free-stream Mach numbers
M∞ � 2, the dynamics of compressible shear boundary layers does not differ greatly from
its incompressible counterpart (Spina et al. 1994).

The aim of the present work is to ask: (a) Can we use the high-Reynolds-number
asymptotic theory describing free-stream coherent structures in incompressible ASBL
flow (Deguchi & Hall 2014) to describe free-stream coherent structures in compressible
ASBL flow in the subsonic and moderate supersonic regimes? And (b), what is the
influence of the additional physical parameters, namely the Mach number M∞ and the
Prandtl number σ?

Assuming a perfect gas, the basic flow for the compressible ASBL approaches its
free-stream form exponentially and thus has the underlying structure required to support
the free-stream coherent structures described in Deguchi & Hall (2014). We find that
compressibility effects shift the location of the production layer by a constant proportional
to M2∞. However, the key result is that the leading-order equations for the velocity field
in the production layer are identical to those for the incompressible problem. Since the
asymptotics and numerical solutions agreed well for the incompressible case we expect
that this is true for the compressible problem. Moreover, this also represents a significant
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E.C. Johnstone and P. Hall

computational reduction as the solution of the nonlinear eigenvalue production-layer
problem, which was computed by direct numerical simulation by Deguchi & Hall (2014),
can also be used for the compressible problem. However, as discussed at the end of this
paper, we expect that this reduction will not hold in general for other compressible regimes
at higher free-stream Mach number due to the presence of non-parallel effects and shocks.

The equations for the thermal field in the production layer are passive and driven by the
velocity field. This effect arises due to the location of the thin production layer being just
below the free stream, where compressibility effects are negligible because the density
and viscosity are close to their constant free-stream values. As in the incompressible
problem, the nonlinear interaction in the production layer produces a disturbance to the
streamwise velocity field (a ‘streak’) that grows exponentially down towards the wall
through interaction with the mean flow. However, the nonlinear interaction also induces
a disturbance to the temperature field, a ‘thermal streak’, which also grows exponentially
down towards the wall. The amplitude of the thermal streaks is enhanced as the Mach
number is increased whilst the amplitude of the velocity streaks is suppressed. In the
subsonic regime the amplitude of the velocity streaks is in general one order of magnitude
larger than that of the thermal streaks but the amplitudes become of comparable size in
the moderate supersonic regime. At the wall, both the velocity and thermal streaks vanish
so as to satisfy the wall boundary conditions. The location where the thermal and velocity
streaks attain their maximum amplitude relative to the velocity streak is controlled by the
Prandtl number.

The rest of this paper is presented as follows: in § 2, we provide a brief description
of free-stream coherent structures in incompressible ASBL flow. We then define the
governing equations for compressible ASBL flow in § 3 and find the basic flow in § 4.
The production-layer problem is then described in § 5. We present the solution below the
production layer and down to the wall in § 6. We then present results for a variety of
parameters in § 7 and finally in § 8 we draw some conclusions.

2. Free-stream coherent structures in incompressible parallel boundary-layer flows

To provide some context for the discussion of free-stream coherent structures in the
compressible ASBL flow, we briefly summarise the results of Deguchi & Hall (2014) for
free-stream coherent structures in incompressible ASBL flow.

Incompressible ASBL flow describes viscous, incompressible flow (u∗, v∗,w∗) with
respect to Cartesian coordinates (x∗, y∗, z∗), with dynamic viscosity μ and kinematic
viscosity ν, over a flat plate at y∗ = 0. Uniform flow exists in the free stream, so denoting
free-stream values by subscript ∞, at the free-stream (u∗, v∗,w∗) = (u∞,−v∞, 0).
The plate is subject to constant suction, so the velocity at the plate is (u∗, v∗,w∗) =
(0,−v∞, 0). Non-dimensionalising the velocity components on the free-stream speed
u∞ and the coordinates on the length scale ν/v∞, and defining the Reynolds number
Re = u∞/v∞, the basic flow is given by

(ub, vb,wb) = (1 − e−y,−Re−1, 0). (2.1)

Deguchi & Hall (2014) showed that, at high Reynolds numbers, the incompressible
Navier–Stokes equations allow for nonlinear equilibrium solutions taking the form of
a roll–wave–streak interaction propagating in a viscous layer at the outer edge of
the boundary layer; this layer is termed the production layer and the solutions are
known as free-stream coherent structures. The interaction in the production layer is
characterised by nonlinear travelling-wave solutions propagating with wave speed c;
numerical computations suggest that the asymptotic behaviour of the wave speed is
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Free-stream coherent structures in compressible shear flows

1 − c = O(Re−1), so that the wave propagates downstream with almost free-stream speed.
The solutions also have streamwise length scales comparable to the spanwise length scales,
and the thickness of production layer is comparable to the boundary-layer thickness.
Seeking a solution with these scalings, which is periodic in the streamwise and spanwise
directions with respective wavenumbers α and β, shows that the production layer in ASBL
flow is located at y = ln Re.

The solution inside the production layer is U(X, Y, z) = (U,V,W), where (x, y, z) =
(X − ct, Y − ln Re, z), c = 1 − Re−1c1, and is determined by numerically solving the full
Navier–Stokes equations at unit Reynolds number as a nonlinear eigenvalue problem for
the perturbed wave speed c1 of the travelling wave:

([U + c1 î] · ∇)U = −∇P + ∇2U, (2.2)

∇ · U = 0. (2.3)

The asymptotic structure of the solution emerging from the lower side of the production
layer shows that, below the layer, the disturbance to the streamwise velocity (termed the
streak), which occurs as a result of the nonlinear interaction in the production layer, can
grow exponentially like e−Y as Y → −∞ while the other velocity components decay. Thus
moving beneath the production layer,

u → 1 − e−y + d0

Re
+ J1

Reω1
e(ω1−1)y cos(2βz)+ J1K1

Re2ω14ω1
e(2ω1−1)y + · · · , (2.4)

v → − 1
Re

+ K1

Reω1+1 eω1y cos(2βz)+ · · · , (2.5)

w → − K1ω1

2βReω1+1 eω1y sin(2βz)+ · · · , (2.6)

where

J1 = K1

(ω1 − 1)2 + (ω1 − 1)− 4β2 , ω1 = −1 +
√

1 + 16β2

2
� 0, (2.7a,b)

for spanwise wavenumber β, and where K1 is found as part of the numerical solution of the
eigenvalue problem in the production layer. These solutions are valid as the wall layer is
approached, i.e. when 1 � y � ln Re. The constant of integration d0 is found by matching
with the numerical solution of the eigenvalue problem (2.2)–(2.3) which was computed for
a range of spanwise wavenumbers β in Deguchi & Hall (2014). Thus the term d0/Re is the
next order correction to the mean flow due to the nonlinear interaction in the production
layer. Therefore in general the streamwise velocity solution is only given up to a constant,
however, the correction does not influence the vortex field which is the quantity of interest.
By solving for the induced flow throughout the boundary region between the production
layer and the wall, Deguchi & Hall (2014) show that for β < 1/

√
2 the streak disturbance

grows down to the main part of the boundary layer, before being reduced to zero at the
wall to satisfy the boundary conditions.

3. Governing equations for compressible ASBL flow

We now consider the compressible counterpart of ASBL flow. Consider a viscous,
compressible perfect gas with density, temperature and dynamic viscosity ρ∗, θ∗ and μ∗
respectively, flowing with velocity u∗ = (u∗, v∗,w∗)with respect to Cartesian coordinates
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E.C. Johnstone and P. Hall

(x∗, y∗, z∗) over an infinitely long flat plate at y∗ = 0. Uniform suction exists at the
plate boundary so that, denoting free-stream values by subscript ∞, the velocity is
u∗ = (0,−v∞, 0) at the plate. Meanwhile, a long way from the plate at the free stream,
u∗ → (u∞,−v∞, 0) and (ρ∗, θ∗, μ∗, p∗) → (ρ∞, θ∞, μ∞, p∞/ρ∞u2∞). The suction at
y∗ = 0 does not allow for zero heat transfer over the plate due to the transfer of kinetic
energy across it, and therefore we assume the temperature at the plate is fixed so that
θ∗ = θp at y∗ = 0.

We non-dimensionalise by scaling the coordinates (x∗, y∗, z∗) on the velocity-boundary-
layer thickness δ = μ∞/ρ∞v∞, the velocity components (u∗, v∗,w∗) on u∞, the pressure
on ρ∞u2∞ and the quantities ρ∗, θ∗ and μ∗ on their free-stream values. We define the
Reynolds number Re by

Re = u∞/v∞. (3.1)

Throughout the analysis that follows, we assume the Reynolds number is large. We also
define the following physical constants:

(i) cv , cp, are the specific heats at constant volume and constant pressure respectively;
(ii) γ = cp/cv is the ratio of specific heats; for air, γ ≈ 1.4;

(iii) R is the molecular gas constant which is approximately 286 m2 s−2 K−1 for air;
(iv) a∞ = √

γRθ∞ is the speed of sound in the free stream;
(v) M∞ = u∞/a∞ is the free-stream Mach number;

(vi) k is the thermal diffusivity of the gas;
(vii) σ = μ∞cp/k is the Prandtl number which defines the ratio of momentum diffusivity

to thermal diffusivity; for air, σ ≈ 0.71.

We consider values of u∞ and a∞ such that we obtain Mach numbers M∞ in the
subsonic and moderate supersonic regimes so that M∞ � 2. In the moderate supersonic
regime we assume that the plate is sufficiently thin so that shocks are not present. We
choose parameters γ and σ that are appropriate for the ideal gas assumption; in particular,
this means that σ < 2, which will become important in the scaling arguments below.

Then, using mixed notation so that (x1, x2, x3) represents (x, y, z), ∇ = (∂x1, ∂x2, ∂x3)

and u = (u1, u2, u3) represents (u, v,w), the Navier–Stokes equations have the form

ρ
Dui

Dt
= − ∂p

∂xi
+ 1

Re

{
∂

∂xi

(
−2

3
μ∇ · u

)
+ ∂

∂xj

(
μ
∂uj

∂xi

)
+ ∂

∂xj

(
μ
∂ui

∂xj

)}

(i, j = 1, 2, 3), (3.2)

∂ρ

∂t
+ ∇ · (ρu) = 0, (3.3)

ρ
Dθ
Dt

= (γ − 1)M2∞
Re

Φ + (γ − 1)M2
∞

Dp
Dt

+ 1
Re

1
σ

∂

∂xi

(
μ
∂θ

∂xi

)
, (3.4)

p = θ∞U−2
∞ ρRθ, (3.5)

where the dissipation function Φ is defined by

Φ = 1
2μeijeij − 2

3μ(∇ · u)2, (3.6)

and eij = ∂ui/∂xj + ∂uj/∂xi is the rate of strain tensor.
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Free-stream coherent structures in compressible shear flows

We close the equations of motion with a power-law viscosity law, so that after
non-dimensionalisation

μ = θζ . (3.7)

The index ζ = 1 gives the Chapman–Rubesin viscosity law (Chapman & Rubesin 1949)
which is suitable for the subsonic regime; for the moderate supersonic regime a slightly
more accurate model has ζ = 0.76 (Cebeci 2002). If we were to extend the analysis to
higher Mach numbers then a more realistic viscosity model, such as Sutherland’s law
(Sutherland 1893), would be required.

4. The basic flow

We now solve the equations of motion for the basic boundary-layer flow state. The ASBL
flow is steady, two-dimensional and independent of x. Therefore we seek a boundary-layer
solution in the form

(u, v,w, p) =
(

û( y),Re−1v̂( y), 0, p̂( y)
)
, (4.1a)

(θ, ρ, μ) =
(
θ̂ ( y), ρ̂( y), μ̂( y)

)
, (4.1b)

where the scaling for the normal velocity arises from the need to retain viscous effects in
the boundary layer. The boundary conditions at the plate and the free stream are given by

(û, v̂, ŵ) = (0,−1, 0) , θ̂ = θp/θ∞ at y = 0, (4.2a)

(û, v̂, ŵ) → (1,−1, 0) , p̂ → p∞/ρ∞u2
∞, (θ̂, ρ̂, μ̂) → (1, 1, 1) as y → ∞.

(4.2b)

We substitute the expansion (4.1) into the governing equations (3.2)–(3.5) and, assuming
that the Reynolds number is large, retain leading-order terms. The y-momentum equation
from (3.2) with i = 2 reduces to ∂ p̂/∂y = 0, which means that the pressure p̂ is constant
across the boundary layer and equal to its free-stream value of p∞/ρ∞u2∞. It follows that
the equation of state (3.5) reduces to ρ̂θ̂ = 1. Then the continuity equation (3.3) reduces
to ∂y(ρ̂v̂) = 0; integrating and applying free-stream boundary conditions (4.2) gives ρ̂v̂ =
−1 across the boundary layer. Thus, v̂ = −θ̂ , so in particular, the suction condition at the
plate gives θp/θ∞ = 1.

We now use the Dorodnitsyn–Howarth transformation (Dorodnitsyn 1942; Howarth
1948) given by

ξ =
∫ y

0
ρ̂( y′) dy′, (4.3)

so that y-derivatives dy are replaced by ρ̂(ξ) dξ . The equations of motion then reduce to

û′ + (θ̂ ζ−1û′)′ = 0, θ̂ ′ + σ−1(θ̂ ζ−1θ̂ ′)′ + (γ − 1)M2
∞(û

′)2 = 0, (4.4a,b)

where a prime denotes derivative with respect to ξ . In general, these equations must be
solved numerically subject to the boundary conditions (4.2). An analytic solution can be
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found in the special case of the Chapman–Rubesin law when ζ = 1, and is given by

û(ξ) = 1 − e−ξ , θ̂ (ξ) = 1 + (γ − 1)M2∞σ
2(2 − σ)

(e−σξ − e−2ξ ), (4.5a,b)

v̂(ξ) = −θ̂ (ξ), ŵ(ξ) = 0, p̂(ξ) = p∞/ρ∞u2
∞, (4.6a–c)

ρ̂(ξ) =
(
θ̂ (ξ)

)−1
, μ̂(ξ) = θ̂ (ξ). (4.7a,b)

For large ξ , when the temperature and streamwise velocity are approaching their
(non-dimensional) free-stream values of 1, this analytical basic solution can be used
regardless of the index in the viscosity law (3.7). We can invert the Dorodnitsyn–Howarth
transformation (4.3) as

y =
∫ ξ

0
θ̂ (ξ ′) dξ ′. (4.8)

Thus if ξ is large, then we can approximate the Dorodnitsyn–Howarth variable by

ξ ≈ g( y) = y + C0; C0 = (1 − γ )M2∞
4

. (4.9a,b)

Consequently, in the free stream, we can write the basic flow in terms of the physical
variable y. For the interior region we find ξ = g( y) by solving the inversion equation (4.8)
numerically.

Thus for large ξ , i.e. large y, the basic streamwise velocity is given by û ≈ 1 − e−C0e−y.
Thus the streamwise velocity approaches its free-stream form exponentially as a function
of distance from the wall. Therefore the free-stream coherent structure theory of Deguchi
& Hall (2014) can be applied. The basic solution for the temperature field also approaches
its free-stream form exponentially, with the rate of decay being dependent on the value of
the Prandtl number. As discussed above in § 3, gases which provide a good approximation
to the ideal gas assumption have Prandtl numbers σ < 2, and therefore the decay of the
basic state to its free-stream form will be dominated by the exp(−σξ) term in the basic
flow (4.5a,b). Hence, the decay will be slower than that of the streamwise velocity field
û if σ < 1. Thus the thermal boundary layer is thicker than the velocity boundary layer
if σ < 1, and vice versa if σ > 1; this is consistent with laminar boundary-layer theory
which suggests that the thickness of the thermal boundary layer δθ scales relative to the
thickness of the velocity boundary layer δv as δθ ∼ δvσ

−1/3 (Schlichting 1968, p. 307).

5. The production-layer problem for compressible ASBL flow

Using the inversion of the Dorodnitsyn–Howarth transformation for large ξ (4.8), at the
production layer we obtain ξ ≈ y + C0, and therefore the solution in the production layer
can be expressed in terms of the physical variable y. To find the location of the production
layer and the scalings of the flow components in the layer, following Deguchi & Hall
(2014), we seek a travelling-wave solution propagating with almost the free-stream speed
with wavelengths comparable to the boundary-layer scalings of § 4 so that ∂x = ∂y =
∂z = O(1). Then, if viscosity is to play a role in the interaction, v = O(Re−1), and by
the continuity equation (3.3), 1 − u = w = O(Re−1). To retain convective terms in the
x-momentum equation (3.2) the ρ(∂t + u∂x) term must also be O(Re−1); this defines the
wave dependence in the production layer. The pressure must then be O(Re−2) to stay in
play.
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Free-stream coherent structures in compressible shear flows

The streamwise component of the velocity field in the production layer must include
the basic flow component (4.5a,b) for matching. For large ξ , the basic flow û has the
form 1 − û = exp(−y − C0), therefore, in the production layer, e−y−C0 = Re−1. Thus the
location of the production layer is given by y = yPL = ln Re − C0; this allows us to define a
production-layer variable Y = y − ln Re + C0. The thickness of the production layer must
then be O(1) to ensure that the streamwise velocity u can only vary on an O(1) length
scale in the production layer.

Thus since C0 < 0 for γ = 1.4, a key feature of the compressible problem is that the
location of the production layer where the waves and rolls are concentrated moves further
away from the wall as both the Reynolds number and the Mach number increase. Since
C0 ∝ M2∞, it is anticipated that the Mach number may have a strong influence on the
hypersonic (large Mach number) production-layer problem; this is discussed further in
the conclusion. However, our choice of parameters means that |C0| � ln Re. Therefore the
values of σ and M∞ do not strongly influence the location of the production layer.

Under the scalings described above, the basic states for the streamwise velocity and
temperature (4.5a,b) in the production layer are given by

û = 1 − 1
Re

e−Y , θ̂ = 1 + λ
(

1
Reσ

e−σY − 1
Re2 e−2Y

)
, (5.1a,b)

where

λ = (γ − 1)M2∞σ
2(2 − σ)

. (5.2)

Thus the largest deviation of the temperature field from its free-stream value at the
production layer is controlled by the value of the Prandtl number σ . In particular, if σ < 1,
then the deviation of the temperature field from its free-stream value is greater than the
streamwise velocity deviation; this is again due to the relative thickness of the thermal and
velocity boundary layers as discussed in § 4.

It is also important to stress that, although the exp(−σξ) exponential in the basic
temperature state (4.5a,b) dominates the decay of the basic state to its free-stream value,
upon exiting the production layer towards the wall as Y → −∞, any growing temperature
disturbances will be dominated by the exp(−2Y) term in (5.1) and thus both exponentials
need to be retained in the production-layer scalings.

Based on the discussion above, in the production layer we seek a solution of the
Navier–Stokes equations in the form

(X, Y, z) = (x − ct, y − ln Re + C0, z); c = 1 − Re−1c1 + . . . ,

u = (1, 0, 0)+ Re−1ū(X, Y, z)+ . . . , p = p∞/ρ∞u2
∞ + Re−2p̄(X, Y, z)+ . . . ,

(θ, ρ, μ) = 1 + Re−σ (θ̄1, ρ̄1, μ̄1)(X, Y, z)+ Re−2(θ̄2, ρ̄2, μ̄2)(X, Y, z).

⎫⎪⎪⎬
⎪⎪⎭

(5.3a–e)
We substitute these scalings into the Navier–Stokes equations (3.2)–(3.5) and, at leading
order, we obtain the production-layer problem

Lū = −∇p̄ + ∇2ū, at order Re−1, (5.4)

∇ · ū = 0, at order Re−1, (5.5)
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E.C. Johnstone and P. Hall

Lθ̄1 = σ−1∇2θ̄1, at order Re−(σ+1), (5.6)

Lθ̄2 = (γ − 1)M2
∞Lp̄ + (γ − 1)M2

∞Φ̄ + σ−1∇2θ̄2, at order Re−3, (5.7)

ρ̄1 + θ̄1 = 0, at order Re−σ , (5.8)

p̄ = Rθ∞u−2
∞ (ρ̄2 + θ̄2), at order Re−2, (5.9)

μ̄1 = ζ θ̄1, at order Re−σ , (5.10)

μ̄2 = ζ θ̄2, at order Re−2, (5.11)

where the operator L = ([ū + c1 î] · ∇), ∇ = (∂X, ∂Y , ∂z) and the dissipation function Φ̄
is found by substituting the production-layer scalings into (3.6).

We see that the production-layer equations for the velocity field ū (5.4)–(5.5) are the
same as the equations (2.2)–(2.3) for the incompressible production-layer problem in
Deguchi & Hall (2014), which describe a unit-Reynolds-number eigenvalue problem for
the wave speed c1. The only difference in the compressible problem is that the equations
are solved at a slightly different value of y. Therefore, the solution to the incompressible
eigenvalue problem, which was calculated in Deguchi & Hall (2014), can now also be used
for the compressible problem. The velocity field then drives the temperature field through
the heat equations (5.6)–(5.7); (5.6), which is obtained at O(Re−σ ), is dominant in the
production layer, but we require the solution of the equation at O(Re−2) as the production
layer is exited towards the wall.

The production-layer problem (5.4)–(5.11) is solved subject to boundary conditions
specifying that the flow exiting the production layer on either side must match
asymptotically onto the basic solution (4.5a,b),

ū → (0,−1, 0), θ̄1 → λe−σY , θ̄2 → −λe−2Y as Y → ∞, (5.12)

ū → (−e−Y ,−1, 0), θ̄1 → λe−σY , θ̄2 → −λe−2Y as Y → −∞, (5.13)

and periodicity conditions; defining α and β as the streamwise and spanwise
wavenumbers, respectively,

(ū, θ̄1,2)(X, Y, z) = (ū, θ̄1,2)(X + 2π/α, Y, z), (5.14)

(ū, θ̄1,2)(X, Y, z) = (ū, θ̄1,2)(X, Y, z + 2π/β). (5.15)

Thus, boundary condition (5.13) allows for the streamwise velocity disturbance ū to grow
exponentially beneath the production layer. However, it also allows for the disturbances to
the temperature field θ̄1, θ̄2 to grow exponentially, and at a faster rate than the streamwise
velocity disturbance. Coming out of the production layer θ̄2 is dominant, however, θ̄1,
which satisfies a homogeneous equation, must be retained as it is needed at the wall. All
disturbances must be reduced to zero at the wall and therefore, as in the incompressible
problem, the maximum value of the disturbances will occur in a layer between the wall
and the production layer where the basic flow adjusts to accommodate the disturbance.

6. The adjustment-layer problem

Below the production layer, the flow returns to the unperturbed boundary-layer flow
(4.5a,b)–(4.7a,b) at leading order. However, the nonlinear production-layer interaction
produces exponentially growing disturbances to the streamwise velocity and temperature
fields that interact with the basic flow beneath the production layer. The flow between the
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Free-stream coherent structures in compressible shear flows

production layer and the wall adjusts to accommodate the disturbances; we thus refer to
this region as the adjustment layer. The solution in the upper part of this layer is dominated
by the solution exiting the production layer. Then as the wall is approached, the solution is
described by the boundary-region equations.

6.1. The solution exiting the production layer
Firstly, above the production layer as Y → ∞, the velocity must eventually return to
its free-stream form ū = (0,−1, 0). As in Deguchi & Hall (2014), the decay of the
streamwise velocity u will be proportional to e−Y−C0 , however, the nonlinear interaction
in the production layer gives a constant of proportionality which differs from unity. Thus
the production-layer interaction can give at most an O(1) effect on the amplitude of the
streamwise velocity displacement. Since the temperature field in the production layer is
entirely driven by the equations for the velocity (5.4)–(5.5), any temperature disturbances
will also decay above the production layer as there is no interaction to sustain them.

We now consider Y → −∞. To analyse the flow beneath the production layer, we
decompose the velocity disturbance ū into vortex and wave components. The wave is
associated with the X-dependent components of the velocity field. The X-independent
components of the velocity are split into a roll flow, which is associated with the
components v̄ and w̄, and the streak, which is the downstream velocity component ū. The
combination of the roll and streak constitutes a streamwise vortex. At leading order, the
flow must satisfy the basic ASBL flow given by (5.13), and therefore we split the streak
into a mean in z and a z-dependent component (there is no mean in z of the roll flow
due to symmetry). In addition to the z-dependent components, we allow the z-independent
term to grow exponentially in the adjustment layer as Y → −∞, but it must eventually
at leading order reduce to −e−Y in order to match onto the unperturbed basic flow at the
wall.

We decompose the temperature disturbances θ̄1 and θ̄2 in the same way. Following the
nomenclature outlined in Ricco & Wu (2007), we refer to the X-independent component
of the temperature disturbance as a ‘thermal streak’ and the corresponding streamwise
velocity disturbance shall be termed a ‘velocity streak’. Hence, in the adjustment layer, we
seek a solution in the form

ū = (ūs(Y),−1, 0)+ (us(Y, z), vr(Y, z),wr(Y, z))+ uw(X, Y, z), (6.1)

θ̄1,2 = θ̄s1,2(Y)+ θs1,2(Y, z)+ θw1,2(X, Y, z), (6.2)

where subscripts s, r and w refer to streak, roll and wave components respectively.
As in the incompressible ASBL study of Deguchi & Hall (2014), outside of the

production layer the roll flow decays as there is no longer any forcing from the Reynolds
stresses associated with the wavefield to sustain it. The wave uw also decays faster
than the roll; this can be seen through a balance of advection–diffusion terms and is
confirmed by the numerical results of Deguchi & Hall (2014). Since the temperature field
is driven entirely by the velocity field, the same is true of the corresponding temperature
components θw1,2 and θw1,2 . However, the velocity streak ūs + us can grow exponentially
through interaction with the roll. The growth or decay of the velocity streak depends on
the spanwise wavenumber β through the periodicity conditions (5.15). The new feature for
the compressible problem is that the interaction of the roll flow with the temperature field
drives the growth of the thermal streak.

We substitute the decomposition of the disturbances (6.1)–(6.2) into the production-layer
equations (5.4)–(5.11). After introducing the roll-flow streamfunction ψ such that
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E.C. Johnstone and P. Hall

∂zψ = vr and ∂yψ = −wr, the resulting equations for the roll-velocity-streak flow are
given by (

∂2

∂Y2 + ∂

∂Y
+ ∂2

∂z2

)
us = e−Yvr, (6.3)

(
∂2

∂Y2 + ∂

∂Y
+ ∂2

∂z2

) (
∂2

∂Y2 + ∂2

∂z2

)
ψ = 0, (6.4)

(
d

dY
+ d2

dY2

)
ūs = β

2π

d
dY

∫ 2π/β

z=0
(usvr) dz, (6.5)

where the final equation for the mean velocity streak disturbance ūs has been found by
taking the mean in z of the production-layer x-momentum equation (5.4). It is important
to note the ∂Y terms in the equations above which arise from the suction in the flow. It is
these terms that allow the interaction of the mean part of the basic flow with the roll flow
to produce growth.

The roll-velocity-streak equations (6.3)–(6.5) are solved together with the equations for
the thermal streak, (

∂2

∂Y2 + 1
σ

∂

∂Y
+ 1
σ

∂2

∂z2

)
θs1 = −σλe−σYvr, (6.6)

(
∂2

∂Y2 + 1
σ

∂

∂Y
+ 1
σ

∂2

∂z2

)
θs2 = −2λvre−2Y − 2(γ − 1)M2

∞e−Y ∂us

∂Y
, (6.7)

(
d

dY
+ 1
σ

d2

dY2

)
θ̄s1 = β

2π

d
dY

∫ 2π/β

z=0
(vrθs1) dz, (6.8)

(
d

dY
+ 1
σ

d2

dY2

)
θ̄v2 = β

2π

d
dY

∫ 2π/β

z=0

(
vrθs2 − (γ − 1)M2

∞Φv
)

dz, (6.9)

where the dissipation function Φv associated with the vortex flow is

Φv = 4
3

(
∂vr

∂Y

)2

+ 4
3

(
∂wr

∂z

)2

+
(

dūs

dY
+ ∂us

∂Y

)2

+
(
∂us

∂z

)2

+
(
∂vr

∂z

)2

+ 2
∂vr

∂z
∂wr

∂Y
+

(
∂wr

∂Y

)2

− 4
3
∂vr

∂Y
∂wr

∂z
. (6.10)

These equations are solved by Fourier expansion in z. The numerical results of Deguchi
& Hall (2014) show that the vortex wavelength is half that of the wave part of the flow, and
therefore the wavelength of the vortex is π/β, which sets the wavenumbers of the Fourier
expansion. Therefore, we seek a solution for ψ in the form

ψ =
∞∑

n=0

an cos(2nβz)+
∞∑

n=1

bn sin(2nβz). (6.11)

The roll-velocity-streak equations (6.3)–(6.5) are the same as those for the
incompressible equation in Deguchi & Hall (2014), with Y = y − ln Re + C0 where
C0 = 0 (corresponding to M∞ = 0) in the incompressible problem. Thus, the solution
of (6.3)–(6.5) is the same as that for the incompressible problem; the incompressible
solution with C0 = 0 is given in (2.4)–(2.6). Thus upon exiting the production layer in the
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Free-stream coherent structures in compressible shear flows

compressible problem, the leading order solution of (6.3)–(6.5) in original boundary-layer
coordinates (x, y, z) and associated flow quantities (u, v,w) is

u → 1 − exp(−( y + C0))+ d0

Re
+ J1

Reω1
exp((ω1 − 1)( y + C0)) cos(2βz)

+ J1K1

Re2ω14ω1
exp((2ω1 − 1)( y + C0))+ · · · , (6.12)

v → − 1
Re

+ K1

Reω1+1 exp(ω1( y + C0)) cos(2βz)+ · · · , (6.13)

w → − K1ω1

2βReω1+1 exp(ω1( y + C0)) sin(2βz)+ · · · , (6.14)

where

Jn = Kn

(ωn − 1)2 + (ωn − 1)− 4n2β2 , ωn = −1 +
√

1 + 16n2β2

2
� 0, (6.15a,b)

for n � 1. The terms represented by ‘· · · ’ represent more slowly growing harmonics in
z, with constants Jn, Kn and ωn for n > 1. The constants d0 and K1 are found as part of
the nonlinear eigenvalue production-layer problem; K1 was reported for a range of β in
Deguchi & Hall (2014). Thus we only give the full streamwise velocity solution up to a
constant d0/Re, but this constant does not affect the streaks. As required, the flow returns
to its unperturbed basic state at leading order, with exponentially growing disturbances
that can become larger than the velocities involved in the nonlinear interaction in the
production layer where the disturbances originated.

The solutions for us, vr and ūs are then used as forcing for the equations (6.6)–(6.9) for
the thermal streak. In the original boundary-layer variables, θ = 1 + Re−σ θ̄1 + Re−2θ̄2,
we find that upon exiting the production layer,

θ → 1 + λ exp(−σ( y + C0))− λ exp(−2( y + C0))+ d1

Reσ
+ d2

Re2

+ 1
Reω1

(L1 exp((ω1 − σ)( y + C0))+ Q1 exp((ω1 − 2)( y + C0))) cos(2βz)

+ 1
Re2ω1

(
L1K1σ

4ω1
exp((2ω1 − σ)( y + C0))+ R1 exp((2ω1 − 2)( y + C0))

)
+ · · · ,

(6.16)

where again the terms represented by ‘· · · ’ denote more slowly growing harmonics in z,
with constants Kn, Jn, Ln, Qn, Rn and ωn for n > 1 and where

Ln = −Knλσ

(ωn − σ)+ σ−1(ωn − σ)2 − σ−14n2β2 , (6.17a)

Qn = −2λKn − 2(γ − 1)M2∞Jn(ωn − 1)
(ωn − 2)+ σ−1(ωn − 2)2 − σ−14n2β2 , (6.17b)

Rn = −2
σ

(
1
4 M2∞Jn

2 (γ − 1) ωn
3 − 1

2 M2∞Jn
2 (γ − 1) ωn

2 − 1
4 JnM2∞Kn (γ − 1)

)
ωn (σ + 2ωn − 2)

−2
σ

(
M2∞

(
β2n2 + 1

4

)
(γ − 1) Jn

2 + 1
2 JnM2∞Kn (γ − 1)− 1

4 QnKn

)
σ + 2ωn − 2

. (6.17c)
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E.C. Johnstone and P. Hall

(a) β <
√

3
4 (b)

√
3

4 < β < 1√
2

(c) 1√
2
< β <

√
3
2 (d) β >

√
3
2

us G G D D
ūs G D D D
θs G G G D
θ̄v G G D D

Table 1. The growth and decay of the disturbances for different values of the spanwise wavenumber β. Growth
is represented by ‘G’ and decay by ‘D’. The growth and decay is shown for the both the mean in z and the
z-dependent parts of the flow.

The constants d1 and d2 are constants of integration; again, we only find the solution for
the temperature field up to a constant, but this constant does not affect the growth of the
thermal streaks beneath the production layer.

The asymptotic solution (6.12)–(6.13) for u and v beneath the production layer shows
that the roll flow always decays as the wall layer is approached, whereas the mean part
of the velocity streak flow (6.12) can grow beneath the production layer if 2ω1 < 1,
corresponding to values of β <

√
3/4. The z-dependent part of the velocity streak

can grow if ω1 < 1, corresponding to values of β < 1/
√

2, and therefore these latter
modes are the fastest growing. If β > 1/

√
2, then the velocity streak disturbance decays

exponentially, and the nonlinear interaction in the production layer simply produces an
O(Re−1) correction to the flow.

Meanwhile, the asymptotic solution for the temperature (6.16) beneath the production
layer shows that the thermal streaks can grow if ω1 < σ or if ω1 < 2. For the range
of values of Prandtl number σ < 2 considered, the modes proportional to exp((ω1 − 2)
( y + C0)) will dominate the growth, and therefore the nonlinear interaction in the
production layer will always produce growing temperature disturbances for β <

√
3/

√
2.

The structure of the solution with varying β is summarised in table 1. The asymptotic
results suggest that there exists a case where the thermal streaks can grow while the
velocity streak decays. However, solutions of the production-layer problem (5.4)–(5.5)
have not been found for values of β � 0.47 (Deguchi & Hall 2014, 2015), and therefore
cases (c) and (d) are possibly not relevant.

We see that, in all cases, a nonlinear interaction in the production layer of size
O(Re−1), which drives O(Re−2),O(Re−σ ) temperature perturbations, can induce much
larger changes to the velocity and temperature fields of O(Re−ω1) in the main part of the
boundary layer. We now consider the solution as it approaches the wall layer, where all
disturbances are eventually reduced to zero to satisfy the wall boundary conditions.

6.2. Boundary-layer analysis
The solutions exiting the production layer, (6.12)–(6.14) and (6.16), do not satisfy the wall
boundary conditions. We now find the solution for the induced flow which is valid all
the way down to the wall. This solution should also match onto the solution exiting the
production layer given by (6.12)–(6.14) and (6.16). An examination of this solution shows
that in the boundary layer, disturbances can grow exponentially. The z-dependent part
of the disturbance grows faster than the z-independent part; therefore, to match onto the
solution exiting the production layer, the boundary-region solution will have z-dependence
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Free-stream coherent structures in compressible shear flows

in the form of cos(2βz). However, the solution must also satisfy conditions (4.2a), and
therefore any disturbances must ultimately be reduced to zero at the wall.

The solution in the boundary region is described in terms of the Dorodnitsyn–Howarth
variable ξ ; since disturbances are always small compared with the basic flow, the definition
of the variable in (4.3) is valid throughout the flow, and in particular, ∂y = ρ̂(ξ)∂ξ . The
inversion of the Dorodnitsyn–Howarth transformation for y(ξ) is given in (4.8), however,
unlike near the wall and in the production layer, we cannot generally find an explicit
relationship for ξ( y) as it cannot be assumed that the exponential terms involving ξ are
smaller than the linear terms. Therefore, to find the solution for the physical variable y,
we first solve the boundary-region equations in terms of ξ , and then use the monotonic
relationship y(ξ) in (4.8) to plot the solutions for each corresponding value of y.

Based on this discussion, in the boundary region we seek a solution in terms of the
fundamental harmonics of the solution exiting the production layer (6.12)–(6.14), (6.16) in
the form

u = û(ξ)+ Re−ω1 ũ(ξ) cos(2βz), (6.18a)

v(ξ) = Re−1v̂(ξ)+ Re−(1+ω1)ṽ(ξ) cos(2βz), (6.18b)

w = Re−(1+ω1)w̃(ξ) sin(2βz), p = p̂(ξ)+ Re−(2+ω1)p̃(ξ) cos(2βz), (6.18c)

(θ, ρ, μ) =
(
θ̂ (ξ), ρ̂(ξ), μ̂(ξ)

)
+ Re−ω1

(
θ̃ (ξ), ρ̃(ξ), μ̃(ξ)

)
cos(2βz), (6.18d)

where the basic solution (hat quantities) is given by the solution of (4.4a,b). We use
the same velocity streak and thermal streak terminology to refer to the disturbances to
the streamwise velocity and temperature fields respectively, and again the roll flow is
associated with the disturbances to the (v,w) components of the velocity.

We substitute this expansion into the Navier–Stokes equations (3.2)–(3.5), which leads
to a set of ordinary differential equations in ξ for the leading-order disturbance amplitudes
(tilde quantities). Following Hall (1983), we eliminate the pressure p̃ and the spanwise
disturbance velocity w̃; then we also eliminate the viscosity μ̃ and the density ρ̃ using the
equation of state (3.5) and the linearised power-law viscosity law (3.7). We are then left
with three coupled differential equations for ũ (from the x-momentum equation), ṽ (from
the y-momentum equation) and θ̃ (from the temperature equation)

A1ũ + A2ũ′ + A3ũ′′ = A4ṽ + A5θ̃ + A6θ̃
′, (6.19)

B1ṽ + B2ṽ
′ + B3ṽ

′′ + B4ṽ
(3) + B5ṽ

(4) = B6θ̃ + B7θ̃
′ + B8θ̃

′′ + B9θ̃
(3) + B10θ̃

(4),
(6.20)

C1θ̃ + C2θ̃
′ + C3θ̃

′′ = C4ũ′ + C5ṽ. (6.21)

Here, the superscripts represent derivatives in the usual way. The coefficients Ak, Bk and
Ck depend on the basic solution and are too long to write here; details are available from
the authors on request. These coupled equations are solved subject to zero-disturbance
and no-slip boundary conditions at the wall, and matching to the solution exiting the
production layer (6.12), (6.13), (6.16) at ξ = ξPL = ln Re, so that

ũ(0) = 0, ũ(ξPL) = J1 exp((ω1 − 1)ξPL), (6.22a)

ṽ(0) = ṽ′(0) = 0, ṽ(ξPL) = K1 exp(ω1ξPL), ṽ′(ξPL) = K1ω1 exp(ω1ξPL), (6.22b)

θ̃ (0) = 0, θ̃ (ξPL) = (L1 exp((ω1 − σ)ξPL)+ Q1 exp((ω1 − 2)ξPL)) . (6.22c)
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E.C. Johnstone and P. Hall

Altitude (m) θ∞ (K) a∞ (m s−1) u∞ (m s−1) v∞ (m s−1)

0 288.2 340 34–679 2.4 × 10−4 − 8.5 × 10−3

5000 255.7 320 32–640 2.3 × 10−4 − 8.0 × 10−3

11 000 216.8 295 29–589 2.1 × 10−4 − 7.4 × 10−3

Table 2. The range of dimensional values of free-stream velocity u∞ and suction velocity v∞ at free-stream
temperature θ∞ for the range of Mach numbers 0.1 � M∞ � 2 and Reynolds numbers 80 000 � Re �
140 000.

The reduced boundary-region equations are discretised on a grid with N interior points
and we use second-order accurate centred finite differences to approximate the derivatives
with step size�ξ ; see Appendix A for details. We then solve the resulting matrix equation
for ũ, ṽ and θ̃ .

7. Results

We solve the matrix system for ũ, ṽ and θ̃ on a grid containing N = 2000 points. To
compute the boundary conditions (6.12), (6.13) and (6.16), we require the value of K1 =
K1(α, β) which is determined as part of the numerical solution of the production-layer
nonlinear eigenvalue problem (5.4)–(5.5) for the wave speed c1. For wavenumber values
(α, β) = (0.2, 0.4), which by table 1 is in the regime where both the velocity and thermal
streaks are expected to grow, Deguchi & Hall (2014) find K1 = 16.9; we use these
parameter values in our computations.

We explore the behaviour of the velocity and thermal streaks as the Reynolds number
Re, Mach number M∞ and Prandtl number σ vary. The Reynolds number and Mach
number are defined using the dimensional quantities u∞ (the streamwise velocity), v∞ (the
suction velocity) and θ∞ (the free-stream temperature). Using the International Standard
Atmosphere (International Organization for Standardization 1975) value for temperature at
a fixed altitude, we describe in table 2 the range of free-stream velocities u∞ and suction
velocities v∞ required to obtain Reynolds numbers in the range 80 000–140 000 and Mach
numbers in the subsonic to moderate supersonic range, 0.1 � M∞ � 2.

Next, to examine the development of the flow disturbances beneath the production layer,
we define the amplitudes of the leading-order velocity streak, roll and thermal streak
solutions exiting the production layer (6.12)–(6.14), (6.16) and the numerical solution in
the boundary region

Aus = Re−1

√
β

2π

∫ 2π/β

0
u2

s dz, Aũ = Re−ω1

√
ũ2

2
, (7.1a,b)

Avr,wr = Re−1

√
β

2π

∫ 2π/β

0
(v2

r + w2
r ) dz, Aṽ,w̃ = Re−(ω1+1)

√
ṽ2 + w̃2

2
, (7.2a,b)

Aθs =
√
β

2π

∫ 2π/β

0

(
Re−σ θs1 + Re−2θs2

)2 dz, Aθ̃ = Re−ω1

√
θ̃2

2
. (7.3a,b)

We first consider the validity of the upper adjustment-layer solution (6.12)–(6.14), (6.16).
In figure 1 we plot the amplitudes of the velocity streaks, roll flow and thermal streaks
for both the asymptotic solution (6.12)–(6.14), (6.16) and the numerical solution of the
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Free-stream coherent structures in compressible shear flows
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Figure 1. The amplitudes of the velocity streak (a,b), roll flow (c,d) and thermal streak (e, f ). The solid
black lines denote the amplitudes of the boundary-region solution (Aũ, Aṽ,w̃, Aθ̃ ) whilst the dashed lines
denote the amplitudes of the asymptotic production-layer solution (Aus , Avr,wr , Aθs ) as functions of the
Dorodnitsyn–Howarth variable ξ . The four lines denote the amplitudes calculated for Reynolds numbers
Re = 80 000, 100 0000, 120 000 and 140 000, corresponding to production-layer locations ξPL = 11.29, 11.51,
11.70 and 11.85 respectively. The black arrow denotes the direction of increasing Reynolds number. The
amplitudes in (a,c,e) were calculated using a subsonic free-stream Mach number M∞ = 0.8 whilst (b,d, f )
are the amplitudes for the moderate supersonic regime with M∞ = 2. The Prandtl number is σ = 0.71 and we
have used ζ = 0.76 in the power-law viscosity law (3.7) to calculate the basic flow.

boundary-region equations (6.19)–(6.21) in terms of the Dorodnitsyn–Howarth variable ξ ,
so that the production layer is located at ξPL = ln Re. For both the subsonic (a,c,e) and
moderate supersonic (b,d, f ) regimes, the asymptotic solution describing the roll flow is
valid all the way to the wall, whereas the solution for the velocity and thermal streaks
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Figure 2. The numerical solution of boundary-region equations (6.19)–(6.21) at subsonic Mach number
M∞ = 0.8. The Prandtl number is σ = 0.71 and we have used ζ = 0.76 in the power-law viscosity law (3.7)
to calculate the basic flow. The amplitudes of the velocity streak Aũ (a) and the thermal streak Aθ̃ (c) (left
axis) are denoted by solid black lines together with the basic flow profile û( y) (a) and θ̂ ( y) (c) (right axis),
which are denoted by dashed lines. The four solid lines denote the amplitudes calculated for Reynolds numbers
Re = 80 000, 1 000 000, 120 000 and 140 000, corresponding to production-layer locations yPL = 11.35, 11.58,
11.76 and 11.91 respectively. The black arrow denotes the direction of increasing Reynolds number. The
velocity (b) and thermal (d) streaks are shown over two vortex wavelengths at a Reynolds number Re = 80 000,
with yPL = 11.35.

breaks down as the wall is approached; the location of this breakdown indicates the
thickness of the upper adjustment layer. This breakdown occurs further from the wall
in the moderate supersonic regime, indicating a thinner upper adjustment layer. We also
note that the amplitude of the thermal streaks for subsonic free-stream Mach numbers is
approximately one order of magnitude smaller than that of velocity streaks, whereas in the
moderate supersonic regime the amplitudes are comparable.

As the wall is approached, the numerical solution of the boundary-region equations
describes the flow induced by the disturbances from the production layer. In figure 2
we show the development of the amplitudes of the velocity and thermal streaks as the
walls is approached, for subsonic free-stream Mach number M∞ = 0.8, as a function of
the physical variable y which is related to the Dorodnitsyn–Howarth variable by (4.8).
As in the incompressible case, the velocity streak grows throughout the boundary region
before taking its maximum in the near-wall boundary layer. In the compressible problem,
the nonlinear interaction in the production layer also produces a thermal streak which
similarly grows throughout the boundary layer; the rate growth of the thermal streak
is higher than that of the velocity streak so that the effect of the thermal streak is
felt both further from the wall and more uniformly across the flow compared with the
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Free-stream coherent structures in compressible shear flows
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û(y) θ̂ (y)

(×10–3)(×10–2) (b)(a)

Figure 3. The amplitude of the velocity streaks (a) and thermal streaks (b) (solid lines, left axis), together with
the basic flows û( y) and θ̂ ( y) (dashed lines, right axis) for free-stream Mach numbers M∞ = 0.8, 1.4 and 2.
The arrow indicates the direction of increasing Mach number. The Prandtl number is σ = 0.71 and we have
used ζ = 0.76 in the power-law viscosity law (3.7) to calculate the basic flow.

velocity streak. In figure 2(b,d) we show the velocity and thermal streaks over two vortex
wavelengths. Note that the velocity and thermal streaks shown in figure 2(b,d) are in phase,
but the functions of y multiplying cos(2βz) have opposite sign.

The variation of the amplitude of the velocity and thermal streaks for varying Mach
number is shown in figure 3, for a Reynolds number of Re = 80 000. The amplitude
of the thermal streak is enhanced as the free-stream Mach number is increased whilst
the amplitude of the velocity streaks decreases; as noted above, for moderate supersonic
M∞ the amplitudes are of comparable magnitude. This is consistent with the idea of
compressibility effects becoming more important as the free-stream Mach number is
increased (Morkovin 1962), but also suggests that the amplitude of the velocity streaks
could be become larger than that of the thermal streaks in more compressible regimes.
The location of the maximum amplitude of the thermal streak occurs further from the wall
as M∞ is increased, with the structure of the amplitude solution changing from two local
maxima to one more pronounced peak. Thus unlike the incompressible case, the growth
of the thermal streak is not uniform in y.

Meanwhile, the effect of Prandtl number on the streak amplitude is shown in figure 4
for both the subsonic and moderate supersonic regimes. Increasing the Prandtl number
from 0.7 to 1.3 leads to velocity streaks with smaller maximum amplitude where the
maximum occurs further from the wall; these effects are more pronounced in the moderate
supersonic regime than the subsonic regime. Meanwhile, for the thermal streaks, the effect
of increasing the Prandtl number is to decrease the amplitude of the streak exiting the
production layer, inhibit the growth of the streak further from the wall, but increase the
eventual rate of growth. In the subsonic case the streaks eventually have a larger maximum
amplitude; this is not the case in the moderate supersonic regime.

8. Discussion

Our results show the existence of free-stream coherent structures in the compressible
ASBL at O(1)Mach number. The solutions take the form of a roll–wave–streak interaction
at the edge of the boundary layer, in a production layer whose location is dependent on
both the Prandtl number and the Mach number. The interaction produces both a streaky
disturbance and a temperature disturbance. These grow exponentially out of the production
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Figure 4. The amplitude of the velocity streaks (a,c) and thermal streaks (b,d) for Prandtl number σ = 0.71
(solid black line), 1 (dashed line) and 1.3 (dotted line). The amplitudes in (a,c) are for a subsonic free-stream
Mach number M∞ = 0.8 whilst (b,d) are for the moderate supersonic regime with M∞ = 2. The Reynolds
number is Re = 80 000 and we have used ζ = 0.76 in the power-law viscosity law (3.7) to calculate the basic
flow.

layer, with the rate of growth being controlled by the spanwise wavenumber and, for
the temperature disturbance, the Prandtl number. Above the layer, the disturbances decay
rapidly to zero. For the compressible case considered here, the main difference from the
incompressible case is the development of a spanwise varying temperature field beneath
the production layer. The amplitude of the induced temperature field disturbances depends
on both the Prandtl number and the free-stream Mach number, with the amplitude of
the velocity and thermal streaks being comparable in the moderate supersonic regime.
We might anticipate that in practice the induced temperature and streak fields could be
big enough to lead to secondary instabilities. In the incompressible case we know from
Dempsey, Hall & Deguchi (2017) that the streak generated by the free-stream coherent
structure acts as a receptivity mechanism in curved flows, so for curved compressible
flows, such as those over turbine blades, we anticipate that the structures described here
might trigger transition through the Görtler vortex mechanism.

Our results show that the fundamental mechanism described by Deguchi & Hall (2014)
for incompressible flows is also operational in compressible flows. In particular, this
suggests the mechanism will occur in compressible jets and therefore might have important
consequences for sound production in compressible jet flows. Extension of the work of
Deguchi & Hall (2015) on swept wing flows is also possible.
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Free-stream coherent structures in compressible shear flows

Our analysis has assumed that the viscosity can be described by the power-law viscosity
law, that the effect of shocks in the moderate supersonic regime is negligible with a
sufficiently thin plate and that the gas in question is an ideal gas. Extension of the work
to account for a more realistic viscosity model, for example Sutherland’s law (Sutherland
1893), is straightforward but we believe that for the Mach numbers considered here that
is not necessary. At hypersonic speeds beyond the regime covered here both real gas
effects and more realistic viscosity models must be used and an intriguing question is
the relationship between the production-layer problem and the temperature adjustment
layer for the basic state at hypersonic speeds. Certainly, we know from for example
Cowley & Hall (1990), Blackaby, Cowley & Hall (1993) and Fu, Hall & Blackaby (1993)
that real gas effects, realistic viscosity models and indeed shocks present in the flow
can significantly alter streamwise vortex or travelling-wave instabilities, so it is to be
expected that the free-stream coherent structure mechanism at hypersonic speeds will be
significantly different from that in the moderate supersonic case.

It is not yet known whether the class of exact coherent structures described by Hall
& Sherwin (2010) can be extended to compressible flows. However, the fundamental
asymptotic analysis supporting the structure is the vortex–wave interaction theory of Hall
& Smith (1991) which in fact was given in the context of compressible flows so it would
appear likely that it is operational in compressible flows. Moreover, the inviscid stability
equation for many boundary-layer compressible flows has unstable solutions when the
incompressible counterpart has none (Mack 1975, 1984) so it may well be that vortex–wave
interactions in compressible flows may have a richer structure than their incompressible
counterparts. Taken together with the extension of the free-stream coherent structure
mechanism to compressible flows, it suggests that compressible flows might well have
a significant family of possible exact coherent states.
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Appendix A. The finite-difference approximation to the boundary-region equations

We denote the values of ũ, ṽ and θ̃ at ξi = (i − 1)�ξ , �ξ = 1/N by ũ(ξi) = ũi, ṽ(ξi) =
ṽi and θ̃ (ξi) = θ̃i, respectively, where 0 � i � N + 1. The wall is at ξ1 = 0 and the
production layer is at ξN = (N − 1)�ξ = ξPL.

The discretised boundary-region equations are

α1ũi+1 + α2ũi + α3ũi−1 = α4ṽi + α5θ̃i+1 + α6θ̃i + α7θ̃i−1, (A1)

β1ṽi+2 + β2ṽi+1 + β3ṽi + β4ṽi−1 + β5ṽi−2

= β6θ̃i+2 + β7θ̃i+1 + β8θ̃i + β9θ̃i−1 + β10θ̃i−2, (A2)

γ1θ̃i+1 + γ2θ̃i + γ3θ̃i−1 = γ4ũi+1 + γ5ũi−1 + γ6ṽi. (A3)
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E.C. Johnstone and P. Hall

The coefficients αk, βk and γk depend on the coefficients Ak, Bk and Ck. The coefficients
of the finite-difference approximation to the x-momentum equation (6.19) are given by

α1 = A2/�ξ + A3/�ξ
2, α2 = A1 − 2A3/�ξ

2, α3 = −A2/�ξ + A3/�ξ
2, (A4a)

α4 = A4, α5 = A6/2�ξ, α6 = A5, α7 = −A6/2�ξ. (A4b)

The coefficients of the finite-difference approximation to the y-momentum equation (6.20)
are given by

β1 = B4/2�ξ3 + B5/�ξ4, (A5a)

β2 = B2/2�ξ + B3/�ξ2 − 2B4/2�ξ3 − 4B5/�ξ4, (A5b)

β3 = B1 − 2B3/�ξ2 + 6B5/�ξ4, (A5c)

β4 = −B2/2�ξ + B3/�ξ2 + 2B4/2�ξ3 − 4B5/�ξ4, (A5d)

β5 = −B4/2�ξ3 + B5/�ξ4, β6 = B9/2�ξ3 + B10/�ξ4, (A5e)

β7 = B7/2�ξ + B8/�ξ2 − 2B9/2�ξ3 − 4B10/�ξ4, (A5f )

β8 = B6 − 2B8/�ξ2 + 6B10/�ξ4, (A5g)

β9 = −B7/2�ξ + B8/�ξ2 + 2B9/2�ξ3 − 4B10/�ξ4, (A5h)

β10 = −B9/2�ξ3 + B10/�ξ4. (A5i)

The coefficients of the finite-difference approximation to the temperature equation (6.21)
are given by

γ1 = C1/2�ξ, γ2 = −C1/2�ξ, γ3 = C2, γ4 = C4/2�ξ + C5/�ξ2, (A6a)

γ5 = C3 − 2C5/�ξ2, γ6 = −C4/2�ξ + C5/�ξ2. (A6b)

The coefficients A1–A6, B1–B10 and C1–C5 are available from the authors on request.
These finite-difference approximations are then encoded in a 3 × 3 block matrix A

where each block is of size (N + 2)2. The first, second and third block rows contain the
discretisations of the x-momentum, y-momentum and temperature equations respectively.
To find the solution ũ = (ũ(ξi), ṽ(ξi), θ̃ (ξi))

T for 0 � i � N + 1 we solve Aũ = b, where
b contains the values of the solution and its derivatives at the boundaries.
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Chapter 6

Conclusions

6.1 Summary

This thesis has explored how asymptotic methods can be used as a powerful tool in

understanding how geometric perturbations affect static menisci in channel geome-

tries, and how unsteady and compressible high Reynolds-number flows can support

free-stream coherent structures which are thought to form part of the scaffold of tur-

bulent flows. These problems were motivated by issues arising in industry, but have

been explored from a theoretical and idealised perspective.

In Chapters 2 and 3 we used computational and asymptotic methods to find and

describe equilibrium solutions for static liquid-vapour interfaces in perturbed rectan-

gular channels. Chapter 2 focused on configurations with the perturbations taking

the form of ridges and grooves. We used asymptotic methods for a linearised model

for small-amplitude perturbations to show that perturbations that change the channel

volume induce a change in the mean curvature of the meniscus. This leads to a con-

tact line displacement that can be matched onto the arc of a catenoid with the same

mean curvature as the meniscus. Channel-volume-preserving perturbations induced a

deflection of the contact line leading to piecewise-linear displacement; it is, therefore,

possible to obtain large-amplitude displacement for small-amplitude perturbations in

a sufficiently wide channel. This knowledge allowed us to choose suitable patterns of

perturbations to engineer specific contact line shapes.

We did not observe contact angle hysteresis or stick-slip behaviour when imposing

155
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ridge and groove perturbations. However Cox (1983) and Jansons (1985) have observed

these behaviours for drops on surfaces with periodic and random roughness. Moti-

vated by these studies, in Chapter 3 we considered channels with mirror-symmetric

and mirror-anti-symmetric configurations of isolated Gaussian bump perturbations.

The bumps caused the same qualitative deformation of the meniscus and contact line.

Again, we used asymptotic methods for a linearised model for small-amplitude pertur-

bations to show that perturbations that change the channel volume induce a change in

the mean curvature of the meniscus. However, the position of the contact line relative

to the bump affects the direction and amplitude of the contact line displacement and

deformation of the meniscus. By computing quasi-static equilibrium solutions for a

meniscus advancing over a bump, we showed that the meniscus bulges as it approaches

the bump, then the meniscus flattens before the direction of deformation changes as it

passes over the bump. Due to time constraints, only preliminary results were presented

and further analysis is needed to develop an understanding of this problem.

The combination of these studies shows that even small-amplitude geometric per-

turbations to rectangular channels can significantly affect the shape of the equilibrium

solution. Computations of slowly-moving menisci in perturbed rectangular channels

need to account for this deformation of the equilibrium solution when computing the

base state. The insight gained from using asymptotic methods to understand the nu-

merical computations allowed us to the predict of the behaviour of the equilibrium

solution from the shape of the channel walls. Crucially, for small-amplitude perturba-

tions ridge and groove perturbations we were able to predict the far-field behaviour of

the contact line without solving the Young–Laplace equation at all. These tools could

be exploited to achieve desired behaviour of fluids in microchannels.

Chapters 4 and 5 explored a very different reduction of the Navier–Stokes equa-

tions to describe free-stream coherent structure wave-roll-streak-type solutions of the

Navier–Stokes equations in the high-Reynolds number asymptotic limit. In Chapter 4

we considered the unsteady Rayleigh boundary layer. We used scaling arguments to

derive Reynolds-number-independent equations governing the wave-roll-streak interac-

tion equations in a production layer whose location relative to the wall depends on the

Reynolds number. Through a suitable transformation, these equations were reduced
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to the interaction equations for free-stream coherent structures in parallel boundary

layers given in Deguchi and Hall (2014a). The solution to these equations was given

in that paper. We then used the solution of these equations as boundary conditions

to solve the boundary-region equations numerically, to show that the structures could

persist for a finite time. The maximum amplitude of the disturbance produced in the

production layer was felt in the near-wall boundary layer. Thus we showed that free-

stream coherent structures can be supported by unsteady boundary-layer flows in an

analagous way to the mechanism already described by Deguchi and Hall (2015a) for

spatially growing boundary layers and were therefore somewhat unsurprising. Never-

theless it furthered our understanding of how free-stream coherent structures can be

embedded in a wide range of boundary-layer flows, and paved the way for the more

novel results of Chapter 5.

Motivated by industrial applications, particularly a wish to understand and con-

trol turbulent flows in aeronautical situations, in Chapter 5 we considered compressible

parallel boundary layer flows. Here we showed that the location of the production layer

depended on both the Reynolds number and the free-stream Mach number. However,

surprisingly, the interaction equations for the wave-roll-streak velocity field in the pro-

duction layer reduce to exactly those for the incompressible problem. This interaction

then drives a passive thermal field. Numerical solutions of the boundary-region equa-

tions showed that the maximum amplitude of the disturbances was dependent on the

Mach number and the Prandtl number.

Although exact coherent structures and self-sustaining process (SSP) states have

been widely studied in incompressible flows, little is known about their compress-

ible counterparts. The existence of free-stream coherent structure solutions of the

Navier–Stokes equations gives strong evidence that compressible flows may support a

significant family of exact coherent structures. Moreover, it suggests that the structure

underpinning turbulence in compressible flow is of the same type as in incompressible

flows. Of course, the asymptotic results presented here need to be confirmed by com-

putation of SSP states in compressible flows via direct numerical simulation. However,

the remarkable agreement between asymptotic theory and numerical computations in

the incompressible case (as shown in e.g. (Deguchi and Hall, 2014a)) is encouraging

in suggesting that the agreement might be equally good in compressible flows.
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From a broader perspective, the essential features of free-stream coherent structures

are that their existence relies completely on the exponential decay of boundary-layer

flow to its free-stream form and that the disturbance induced by the structure is most

strongly felt in the near-wall boundary layer. Thus, direct numerical simulations of

turbulent flow would reveal the structure in the boundary layer but not necessarily

link its origin to the free-stream coherent structures. Asymptotic methods are crucial

in elucidating this relationship. Moreover, free-stream coherent structures allow a way

for disturbances to get from the free-stream to the boundary layer. This is partic-

ularly relevant in compressible parallel boundary-layer flows, where we may wish to

understand the interaction between noise disturbances and turbulent flows.

6.2 Extensions

A key question that we have only briefly touched upon across the studies is that of

stability. In the studies of capillary equilibria in Chapters 2 and 3, we have thus

far only studied static solutions. The stability of the equilibrium solutions can be

examined using Surface Evolver by checking the eigenvalues of the Hessian of the

energy function of the computed solution as described in Appendix B of Chapter 3.

Solutions for ridge perturbations in Chapter 2 had single solution branches which gave

no evidence of loss of stability, e.g. via turning points. However, we anticipate the

possibility of multiple solution branches for bumps of sufficiently large amplitude or

sharpness that may induce large-amplitude deflections of the contact line.

Furthermore, having computed static solutions for ridge and groove perturbations

and quasi-static solutions for a contact line moving over a bump, a natural step would

be to compute a finger or bubble moving steadily slowly through a rectangular chan-

nel with geometric perturbations. In the case of a zero contact angle meniscus in a

tube, this is an extension of the well-known Bretherton problem (Bretherton, 1961);

more complex confining geometries have been discussed by Wong, Radke and Morris

(1995a,b). A finite contact angle would require a contact angle slip condition which

has been discussed in the context of surface roughness by Miksis and Davis (1994).

The question then is whether geometric heterogeneity introduced by localised geomet-

ric perturbations induces contact angle hysteresis in the channel geometry. Jansons
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(1985) demonstrated that moving contact lines on a random or periodic rough surface

exhibit phenomena such as stick-slip and contact angle hysteresis. Additionally, chem-

ical heterogeneity has been found to induce contact angle hysteresis (Hatipogullari et

al., 2019); since in the linear problem the geometrical perturbation problem is analo-

gous to using chemicals to locally change the contact angle, it is, therefore, reasonable

to expect that such effects might also be seen for geometrically perturbed channels.

We have also not discussed the stability of the free-stream coherent structures de-

scribed in Chapters 4 and 5. The instability of vortex-wave interaction states has

been studied by Deguchi and Hall (2016) in incompressible flows and by Ozcakir, Hall

and Tanveer (2019) for pipe flows. However, this analysis has not been extended to

compressible flows where the existence of the temperature field may impact the sta-

bility. More recently attention has been focused on the instability generated by wall

roughness in channel flows where Hall (2020, 2021) and Hall and Ozcakir (2021) have

shown that a vortex-wave type mechanism controls the instability in channel flows,

growing boundary layers and pipe flows respectively. However, an open question re-

mains whether the streamwise vortex instability is absolute (so that any instabilities

lead to the flow being unstable everywhere) or convective (so that disturbances only

amplify downstream of the noise); this work is ongoing.

Finally, we would like to suggest how the ideas presented in this thesis could be

useful in practice. Chapter 2 showed how it is possible to engineer contact line shapes

for static menisci in rectangular channels using small localised perturbations. This

could be used as a tool to design microfluidic devices with prescribed initial states

for low capillary number dynamical flow. However in practice, microfluidic devices

may not be rectangular or may contain non-rectangular components; for example, mi-

crofluidic tubing is used to connect microfluidic devices to external equipment (Wang,

Chen, et al., 2014). In this case, the basic solution would be a spherical cap, and a

relevant problem to study could be a droplet or catenoid trapped between two parallel

plates. For the droplet, the two radii of curvature have the same sign so the Gaussian

curvature is positive; whereas for the catenoid they have opposite signs leading to neg-

ative Gaussian curvature. A study by Vaziri and Mahadevan (2008) into the nonlinear

response of elastic surfaces with different curvatures to perturbations suggests that
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the signature of the Gaussian curvature determines the nature of the response with

positive Gaussian curvatures inducing global but well-bounded responses, whereas

negative Gaussian curvatures lead to non-local deformation. A caveat is that elas-

tic shells may show sensitivity to Gaussian curvature that is not shared by interfaces

with isotropic tension. However, we might expect that the droplet problem (positive

Gaussian curvature), which is elliptic, could lead to a very localised response, whereas

we might not expect this for the hyperbolic catenoid problem. The problems we have

studied above for a cylindrical meniscus in a rectangular channel, in which we obtain

a long-range divergent response that is unbounded in the far-field, are degenerate in

this framework because the Gaussian curvature is zero. Therefore we might antici-

pate that the Gaussian curvature determines the distance of the long-range response

to perturbations in the confining geometry. This could be important when choosing

geometries of microchannels for specific purposes.

Meanwhile, a source of great frustration and cost in aeronautical design is how

to design aerofoils to reduce noise disturbances in high-speed compressible flows (see

e.g. Brooks, Pope and Marcolini (1989) and Pando, Schmid and Sipp (2014)). To

investigate the role of the free-stream coherent structures described in Chapter 5 in

noise generation, the nonlinear solutions found in compressible boundary layers could

be used as a source term in the linearised Euler equations. We note, however, that

our asymptotic theory does not cover the generation of the source term. Indeed, in

Chapters 4 and 5 we have not addressed how the production layer interaction starts

and ends; the asymptotic theory used to describe these solutions relies on an initial

disturbance that is consistent with the asymptotic structure of the resulting states.

However, as discussed in §1, evidence of the importance of coherent structures in

high Reynolds number transition has been observed extensively in experiments and

numerical simulations.

As discussed in Chapter 5, the question of whether free-stream coherent structures

can be described in hypersonic boundary-layer flows is a natural extension of the

subsonic and moderate supersonic problem, but presents technical difficulties due to

the highly non-parallel nature of the base flow.
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6.3 Conclusion and Outlook

Starting with the Navier–Stokes equations (1.1)–(1.2) and appropriate boundary con-

ditions, we have used simplifications to obtain and solve governing equations for two

specific but very different types of flow: static fluid-fluid interfaces and high-Reynolds-

number boundary-layer flows. From a purely mathematical viewpoint, it is remarkable

that one system of partial differential equations can describe phenomena in two ex-

tremely different physical configurations. In both cases we have demonstrated that

while computations can be used to find solutions of the governing equations, asymp-

totic methods give a much stronger insight into why the solution behaves a certain

way.

Our understanding of physical phenomena in interfacial and boundary-layer flows

is far from complete. While direct numerical simulations are widely used to under-

stand such phenomena, computing solutions is expensive and time-consuming. The

asymptotic methods used in this thesis demonstrate how insights into flow behaviour

can predict behaviour without expensive computations, and enhance understanding

of existing solutions. Ultimately, it is reasonable to assume that sufficiently powerful

computers will exist to be able to compute high resolution direct numerical simulations

of fluid phenomena with relative ease. However, such computing power is currently

almost inconceivable. Moreover, computation of solutions does not guarantee an un-

derstanding of the physics underpinning them. For this reason, asymptotic methods

like those used in this thesis will still have a crucial role to play in our future under-

standing and should be considered a fundamental tool to be used in harmony with

computational and experimental work.
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