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Abstract

Quantum fluids consisting of weakly-interacting atomic Bose Einstein Condensates (BECs)

are superfluids, meaning they are able to flow without viscous effects. Superfluids have

incredible properties, two of which are particularly interesting. Firstly, unlike the solid

body rotation of a normal fluid, when a BEC is forced to rotate an array of quantized

vortices is formed. These vortices are topologically protected defects which have a circu-

lation with a fixed magnitude. Secondly, for a sufficiently slow velocity, the flow around

an obstacle is a steady laminar flow and no vortices are nucleated; above some critical

velocity, quantized vortices are nucleated signalling the appearance of dissipation in the

system. In this thesis, we perform numerical and theoretical investigations in two di-

mensions into BECs which are forced to rotate, and into BECs which flow through a

disordered potential.

We present a method for evolving the projected Gross-Pitaevskii equation in an infinite

rotating BEC, using quasi-periodic boundary conditions to investigate the behavior of the

bulk superfluid in this system in the absence of boundaries and edge effects. We show

that by choosing suitable simulation parameters, such as the size of the spatial grid and

the number of energy levels considered, the numerical error of this method can be made

negligible. Adding dissipation, we use our method to find the lattice ground state for

a given number of vortices. We can then perturb the ground-state, to investigate the

melting of the lattice at finite temperature. This method opens the door to be able to

investigate the dynamics of the superfluid phase transition in a rotating Bose gas without

edge effects.

Although superfluid flow past a single obstacle is a well studied problem, far fewer

studies have considered the case of a flow through a point-like disorder potential. We

identify the relationship between the relative position of two point-like barriers and the

critical velocity of such an obstacle. We then show that there is a good mapping between

the critical velocity of a system with two barriers, and the critical velocity of a system with

a large number of barriers. Driving a superflow through a disordered potential above the

critical velocity, we use the projected Gross-Pitaevskii equation to study how the flow is

arrested through the nucleation of vortices and the break down of superfluidity, a problem

which has interesting connections to quantum turbulence and coarsening. We characterise

the vortex decay as the effective width of the barriers is increased, and observe that vortex

pinning becomes an important effect.

Finally, we use a modified Point Vortex Model to model a number of quantized vortices

which are subject to a continuously varying background potential. We investigate how

the interplay of disorder strength and scale affect scaling laws in vortex dynamics.
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9.1 Schematic: The Törnkvist and Schröder Point Vortex Model . . . . . . . . 113

10.1 Point vortex dynamics in the presence of background fluctuations and

damping. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

10.2 Decay of Nv vortices in a homogeneous background fluid. . . . . . . . . . . 119

10.3 A comparison between the Thomas Fermi and the numerically obtained

density profile of a condensate in a continuously varying disordered potential121

10.4 Decay of point vortices on a varying background density. . . . . . . . . . . 122

C.1 Schematic: the method used to compute the winding number in a circular

barrier. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

D.1 Schematic: The osculating plane. . . . . . . . . . . . . . . . . . . . . . . . 155





Part I

Introduction and Theory

1



2



Chapter 1

Introduction

The existence of Bose-Einstein Condensates (BECs) was originally predicted by Satyen-

dra Nath Bose [1], and was later developed theoretically by Albert Einstein [2, 3]. Quan-

tum mechanics stipulates that there are two classes of particles, bosons and fermions.

Fermionic particles (such as electrons) have half-integer spin and obey the Pauli exclusion

principle, which is to say that fermionic particles are forbidden from entering the same

quantum state. Bosonic particles (such as protons) have integer spin and, unlike fermions,

may populate the same quantum state. In the gases which occupy the majority of the

universe, the constituent particles undergo billiard ball like collisions which dominate the

governing dynamics. At very low but finite temperatures, it was predicted that a large

number of bosons would occupy the ground state macroscopically. Here the bosons cease

to behave like individual particles, bouncing off each other, and instead the wavepackets

of each of the particles overlap. As the bosons have entered the same quantum state,

there is a coherence across the system as the millions of bosons present behave like one,

single, macroscopic quantum object.

Many years passed after Bose and Einstein’s prediction without an experimental re-

alisation of a BEC. One of the major stumbling blocks for laboratories was the need to

cool the atoms to within a few millionths of a degree of absolute zero. However, due

to advances in cooling techniques, a BEC was first experimentally realised in 1995 when

the JILA1 group obtained a condensate of two-thousand 87Rb atoms at a temperature

of 170nK [4]. Shortly after this breakthrough, Bose-Einstein Condensation was achieved

in 7Li by Bradley et al. [5], and then in 23Na by Davis et al. [6]. Collectively, these

achievements led to huge interests in BEC experiments, and this exciting field of research

continues to grow to this day.

In 2001, Cornell, Wieman and Ketterle received a Nobel prize for their studies on

BECs [7]; in the following two decades, several prizes have followed for work on the

fields of condensed matter and superfluidity. To this day, Bose-Einstein Condensates

remain a very active area of research because they are highly experimentally controllable,

1Joint Institute for Laboratory Astrophysics, National Institute of Standards and Technology (NIST),
and University of Colorado.
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4 CHAPTER 1. INTRODUCTION

they are a versatile test bed for quantum mechanics, and they have widespread potential

applications. Around the globe, there are currently hundreds of novel experiments taking

place. These experiments range from the manipulation of light using cold atoms [8], to

the study of BECs in microgravity [9], to the realisation of turbulence in quantum gases

[10]; collectively they are unearthing a plethora of results in this rich and diverse field.

In the remainder of this chapter we provide a more formal definition of Bose-Einstein

Condensation, and discuss some of the techniques which are key to its experimental

realisation. We then introduce superfluidity, along with two of the excitations which may

be present in a superfluid: vortices and solitons. A quick comparison between turbulence

in classical fluids and quantum turbulence follows. We end this chapter by motivating

the work in this thesis, and providing an overview of the structure of this thesis.

1.1 Bose-Einstein Condensation

Suppose we have a gas of N bosonic particles that occupy a volume V , and are in thermal

equilibrium with temperature T , moving with some average velocity v. On average, these

particles are separated by some distance d, which may be approximated as d = (N/V )−1/3,

i.e., one over the cube root of the number density of the gas. The characteristic wavepacket

size of each of these particles is given by the thermal de Broglie wavelength

λDB =

√
2π~2

mkBT
, (1.1)

where ~ = 1.05× 10−34Js is the reduced Planck constant, and kB = 1.38× 10−23JK−1 is

the Boltzmann constant [11]. For our purposes, this wavelength becomes “interesting” at

the point where λDB is comparable to the mean inter-particle spacing d; at this point the

gas condenses and its behaviour may be described by a single macroscopic wavefunction.

A schematic of this can be found in Fig. 1.1. In the remainder of this part we derive the

temperature at which this condensation takes place for a non-interacting gas of bosons,

and comment on its applicability to a trapped gas of interacting bosons.

Considering a gas of non-interacting bosons, which are confined in a hard-walled box2.

Assuming that the bosons are in thermal equilibrium, the occupation number of a single

particle state may, on average, be described by the Bose distribution,

fBose (εs) =
1

exp
(
εs−µ
kBT

)
− 1

, (1.2)

where µ is the chemical potential of the gas, and εs is the energy of the s-th single particle

state [3].

2This derivation closely follows that of Pethick and Smith [13]. We discuss the differences between the
Bose-Einstein condensation temperature derived here, and the Bose-Einstein Condensation temperature
for an interacting gas of bosons which are subjected to a trapping potential, at the end of this section.
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T = TBEC, λDB ≈ d TBEC > TT ≥ TBECT ≫ TBEC

d

v

Density, d−3, Thermal velocity, v λDB ∝ T−1/2

λDB

Figure 1.1: A schematic of a gas as it is cooled below the BEC transition temperature.
From left to right: At high temperatures, relative to the BEC transition temperature
the Bose gas behaves as a classical thermal gas. As T/TBEC is lowered, the de Broglie
wavelength of the particles increases. When T = TBEC the de Broglie wavelength is
comparable to the mean inter-particle distance. As the temperature is lowered below
TBEC, the bosons which macroscopically occupy the ground state form a condensate.
Figure adapted from Ref. [12].

On average, in a 3D gas, a particle in a particular internal state3 occupies one quantum

state per volume, (2π~)3, of phase space. The kinetic energy of a particle with momentum

p = mv is given by Ep = |p|2/(2m), and the region of momentum space where momentum

is less than |p| is simply a sphere with radius |p|. We can use these results to write the

total number of states with a lower energy than some value ε as

G (ε) =
1

(2π~)3 V
4π|p|3

3
=
V
√

2

3π2

(mε)3/2

~3
. (1.3)

Therefore, the density of states, g(ε), is the number of states in the infinitesimally thin

shell between ε and ε+ dε. This density is

g(ε) = lim
dε→0

[
G (ε+ dε)−G (ε)

dε

]
=

V m3/2

√
2π2~3

ε1/2. (1.4)

Consider the number of particles in an excited state, Nex. If Nex < N then not all of

the particles are in excited states, and so the remaining particles must be in the single-

particle ground state. This means that a Bose-Einstein Condensate is present in the

system. The number of atoms in this condensate state is Ncond = N −Nex. The highest

temperature at which the ground state is macroscopically occupied is referred to as the

BEC transition temperature, TBEC, and is determined by the condition that all of the

particles in the system can be placed in excited states.

The Bose distribution, Eqn. (1.2), can be used to calculate the number of excited

states. Assuming that N is sufficiently large so that we can write

Nex =

∫ ∞
0

g(ε) fBose (ε) dε =
V m3/2

√
2π2~3

∫ ∞
0

ε1/2

exp
(
ε−µ
kBT

)
− 1

, (1.5)

3Note that, throughout this thesis, we assume that all particles are in the same internal state.
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which ignores the zero-point energy of the gas and assumes that the discrete energy levels

εs can be replaced with the continuous variable ε. The value of this integral is maximised

when µ = 0. When T = TBEC, all particles are contained in excited states so Eqn. (1.5)

becomes

Nex =
V m3/2

√
2π2~3

(kBTBEC)3/2 Γ

(
3

2

)
ζ

(
3

2

)
, (1.6)

where we have introduced the Gamma function

Γ (n) =

∫ ∞
0

xn−1e−x dx, (1.7)

and the Riemann zeta function

ζ (n) =
∞∑
x=1

1

xn
. (1.8)

For n = 3/2, Eqns. (1.7) and (1.8) converge to Γ (3/2) =
√
π/2 and ζ (3/2) ≈ 2.612

respectively. The result of this is that the BEC transition temperature for a uniform,

non-interacting, 3D Bose gas is given by

TBEC =
2π~2

m [ζ (3/2)]2/3

(
N

V

)2/3

. (1.9)

It should also be noted that condensation of bosons is not limited to the super cold.

Rearranging Eqn. (1.9) we find that

ζ

(
3

2

)
= λ3

DB

N

V
(1.10)

at the BEC transition temperature. The fact that 2.612 ≈ λ3
DBN/V means that, for the

correct balance of density and temperature, a condensate can be realised in any system of

bosonic particles. For example, neutron stars are expected to play host to BECs, despite

having temperatures of approximately 109K [14].

It should be noted that the results quoted in this section are applicable to a three

dimensional gas of non-interacting bosons which is not subjected to a trapping potential.

Modifications to the value of TBEC are required for Bose gases in systems with reduced

dimensionality, as well as for systems which are subject to a trapping potential. In general,

Eqn. (1.5) can be written as

Nex = AδΓ (δ) ζ (δ) (kBTBEC)δ , (1.11)

where Aδ is a constant, and the value of δ depends on both the dimensionality of the

system, and the trapping potential which the bosons are subject to. In a uniform 2D gas,

δ = 1 and ζ(δ) is the harmonic series which diverges, requiring TBEC = 0. Fortunately,

however, Bose-Einstein Condensation is possible in 2D by use of a trapping potential. In

the case of a 2D gas in a harmonic trap, δ = 2 and the constants in Eqn. (1.11) are finite.
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Finally we note that, while it was originally theorized that BEC would be limited to a

gas of non-interacting bosons [1], it was later predicted that the interaction between the

bosons would actually assist in the formation of a condensate [15].

1.2 Experimental Realisations

As we have mentioned, a BEC was first experimentally realised in 1995 [4–6], seven

decades after they were originally predicted. The observation of a BEC was made possible

by developments in laser cooling4 [16–18] and evaporative cooling [19]. In the following

paragraphs, we describe the process by which a gas of bosons may be cooled below TBEC.

The experiment of Anderson et al., [4], begins by collecting about 107 atoms of dilute,

room temperature, 87Rb gas in a hybrid magnetic and optical trap. The gas is then cooled

by lasers. Three pairs of counter-propagating lasers are directed into the trap; the atoms

scatter photons from the beams they are travelling towards, creating a “frictional force”

which slows the atoms [20]. At this point, approximately half of the atoms are left in the

trap, with a temperature of the order of 100µK. The lasers are then switched off, leaving

the atoms to be trapped by a magnetic field.

After laser cooling, the next stage is evaporative cooling. The idea behind evaporative

cooling is simple: by permitting the highest-energy atoms to leave the trap, the average

energy of the remaining atoms is reduced [19]. The number of atoms which escape is

controlled by carefully ramping down the magnetic trapping potential [4]. This resulted

in an almost pure BEC of 2000 87Rb atoms at a temperature of 170nK.

For a dilute, ultra-cold, gas of bosons, the interactions between particles are dominated

by the s-wave scattering length as. If as is positive, the inter-particle interactions are

repulsive, and as can be though of as the length at which atoms rebound in a billiard ball

like collision. If as is negative, the particles are attracted to each other and the condensate

requires an external trapping potential to prevent the collapse of all particles onto a point:

a Bose-nova [21]. Most importantly, however, in order to ensure that the gas remains

sufficiently dilute the s-wave scattering length must be smaller than the mean inter-

particle distance. For several species of atomic BECs, it is possible to tune the scattering

length by using Feshbach resonances [22]. The ability to tune the interaction strength of

an atomic species gives experimentalists unprecedented control over BEC experiments.

While the first BEC experiments were performed by trapping the bosons in harmonic

traps [4–6], in order to investigate systems with more complex geometries, there is a need

to develop a wider variety of trapping potentials.

The first steps at creating an arbitrary potential were taken by Henderson et al. [23].

They were able to form a variety of new traps such as a torus, a diamond, and a ring of

spots by using a scanning tweezer beam. This beam played the role of a repulsive optical

potential whose effective strength can be controlled by a combination of the velocity and

4S. Chu, C. Cohen-Tannoudji and W. D. Phillips would go on to win the Nobel Prize for Physics in
1997 “for developments of methods to cool and trap atoms with laser light”.
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intensity of the beam. As well as extending the geometries of the traps available, this

technique was pioneering in that the trap could be dynamically altered, allowing the

strength of the trap to be varied in time as well as space. Later, the group of Gaunt et

al. [24] used a similar method involving a spatial light modulator to study atomic BECs

in a quasi-uniform three dimensional potential.

Further advances have since been made by Gauthier et al. [25]. They were able to

show that using a digital micromirror device along with a repulsive blue-detuned laser

allows for arbitrary control over the trapping potential. It is now possible to directly image

high-resolution potentials with minimal heat transfer to the trapped atoms. This enables

experimentalists to have an unprecedented level of control over the system geometry.

At the time of writing, BECs have now been realised in a variety of atomic species

including spin-polarized atomic Hydrogen [26], metastable Helium [27], alkali metals such

as Potassium [28] and Cesium [29], alkaline earth metals such as Calcium [30] and Stron-

tium [31], Chromium [32], and the Lanthanide elements Ytterbium [33], Dysprosium [34],

Erbium [35], and Thalium [36]. Aside from their inherent scientific interest, ultra-cold

atomic gases have a range of applications. The highly tunable interactions make them

ideal for use as a quantum simulator [37, 38] or a quantum computer [39, 40]. Moreover,

the atoms are sensitive to the presence of external forces, such as those due to gravita-

tional and magnetic fields, and as such are perfect candidates for use in precise sensing

[40–44].

1.3 Superfluidity

The initial connection between Bose-Einstein Condensation and superfluidity is due to

London [45] and Tisza [46], who were attempting to find an explanation for superfluidity in

liquid 4He [47–49]. The term superfluidity was coined in analogy to “superconductivity”,

as the fluid appears to flow without viscous effects. The superfluid property of atomic

BECs leads to several remarkable properties.

As described above, a BEC flows without viscous effects. This is true so long as the

velocity of the flow is lower than some critical velocity of the system, which was predicted

by Landau [50]. Above this critical velocity, excitations are created in the fluid, which

leads to dissipative effects [51]. We discuss the behaviour of a superfluid in depth in

Part III.

In a finite temperature superfluid, a normal fluid component (which is subject to

viscous effects) exists alongside a superfluid component. The fraction of the fluid which is

in the normal or superfluid components depends on the temperature of the system. This

model has led to the prediction and observation of thermal counterflow, where the system

attempts to diffuse the temperature throughout the system (see, for example, Ref. [52]).

A superfluid does not rotate as a solid body, in the way that a normal fluid does. If a

superfluid is forced to rotate with sufficient angular velocity, a series of vortex lines which
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carry angular momenta are nucleated, mimicking solid body rotation. The number of

vortices in the system depends on the speed of the rotation: the sum of the circulation of

all of the vortex lines must be the same as the circulation of a normal fluid rotating at the

same speed. The ground state of the rotating superfluid is an ordered lattice of vortices.

We will discuss rotating superfluids in detail in Part II. It is important to remark that

while a dilute, weakly interacting BEC is a superfluid, the converse is not true. While

we have alluded to the fact that temperature has an effect on the condensate and the

superfluid fractions, it is not true that these fractions are equivalent. In Part V we give

detailed descriptions of how one may calculate the condensate or superfluid fractions;

fundamentally, these calculations depend on different observables.

1.3.1 Vortices

A key feature of this thesis is the role and dynamics of quantised vortices. Vortices have

been predicted and observed in both two and three-dimensional superfluids [53–57]. These

vortices are similar to their classical counterparts (such as you might find by the plug hole

in your bath), in that they have a core around which the flow circulates. Unlike vortices in

classical fluids, however, the velocity field around a vortex is irrotational [12]. Moreover,

in classical systems the size of the vortex core and the strength of the associated velocity

field is arbitrary; in a BEC, however, the size of the core is fixed (approximately 10−7m in

an atomic Bose Einstein Condensate) and the circulation around the vortex is quantised.

The core of a vortex in a BEC is a density depleted “hole”, the structure of which will

be discussed in Chapter 3. There are several means by which a vortex might be created

in a BEC, including phase imprinting [53], forcing the condensate to rotate at sufficiently

high angular velocities [58, 59], or by dragging an obstacle through the fluid faster than

some critical velocity [60].

While we defer the details of quantized vortices to Chapter 3, we note that they are

topologically protected objects. A vortex can only be removed from the system by colliding

with a boundary, or by annihilating with a vortex which has equal and opposite circulation

(an anti-vortex). The rate at which vortices decay is of great importance to turbulent

systems, and we will discuss this in Parts III and IV.

1.3.2 Solitons

A second excitation which has been predicted and observed in BECs is a soliton. A soliton

is a non-linear wave which has a permanent (localised) form, able to withstand collisions

with other solitions [61].

Strictly speaking, a soliton is an exact solution to the one-dimensional Gross-Pitaevskii

Equation. In a 3D BEC, however, it is still possible to observe waves which maintain their

shape [62–65], which we will refer to as solitary matter waves. Solitons (and solitary matter

waves) come in two flavours, bright and dark; these names derive from their connections
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to optics.

Bright solitons are conceptually easy to imagine: they consist of a density peak which

travels along the background density of the fluid. In atomic BECs, bright solitons can

be realised by tuning the inter-particle interactions to be attractive (that is to say, the

s-wave scattering length as < 0) [62–64, 66]. This self-attraction balances dispersive

effects via the non-linearity in the Gross-Pitaevskii Equation. Bright solitons in atomic

BECs have numerous potential applications, such as in the precision sensing achieved in

interferometry [42].

Dark solitons on the other hand are characterised by a density dip about which the

phase jumps. These excitations travel with speed u, where 0 < |u| ≤ c, and c is the speed

of sound of the system [12]. If |u| = 0, the soliton is a black soliton, where the density

is zero at the centre of the soliton and the phase jumps by π. These solitons are found

in atomic BECs which have repulsive effective interactions (as > 0). Dark solitons are of

particular interest because of the link between dark solitons and vortices [67]. It has also

been found that a dark soliton structure is present in the annihilation process of a vortex

anti-vortex pair [68]. This will be discussed further in Chapter 3.

1.4 Classical and Quantum Turbulence

1.4.1 Turbulence in Classical Fluids

Turbulence, a highly random flow with rapid irregular fluctuations in both space and

time [69], has been a widely studied phenomenon in classical fluids for centuries. In a

normal fluid, which is subject to viscous effects, the degree of turbulence in the flow can

be encoded by the dimensionless Reynolds number [70]

Re =
UL

ν
, (1.12)

where U is the typical velocity of the flow, L is the lengthscale of the system, and ν is

the kinematic viscosity of the fluid. Dynamical similarity allows us to map flows with

different values of U , L and ν, to the same flow pattern, so long as the combination in

Eqn. (1.12) is the same. A classical turbulent state involves the nucleation of vortices,

which can be as large as the system, L. The energy from these large vortices causes the

formation of smaller “eddies”, which in turn create smaller eddies, and so on until the

eddies are of a lengthscale at which viscous effects dominate. This length scale is known

as the Kolmogorov length, and is approximately Re−3/4L. The energy distribution per

scale is the celebrated Kolmogorov −5/3 law [71], and is found by dimensional analysis

to be

E(k) ∝ k−5/3, (1.13)



CHAPTER 1. INTRODUCTION 11

where k is the wavenumber. This energy distribution is responsible for the decay of

turbulence in a classical fluid: the energy which is injected at large scales is transported

to smaller length scales, and is then dissipated by viscosity. Turbulence in classical fluids

is typically associated with high Reynolds numbers, which lead to energy transfers across

length scales which vary by many orders of magnitude.

1.4.2 Turbulence in Atomic BECs

In atomic BECs, unlike in a classical fluid, there is no viscosity. Moreover, in an atomic

BEC, the size of a vortex is fixed by the healing length of the condensate, ξ, which we will

discuss further in Chapter 2. Turbulence in atomic BECs consists of a tangle of superfluid

vortex lines [72, 73]. These vortex lines can be deformed from a straight line [74], and

interact with each other by reconnecting [75], processes which cause the emission of sound

into the system [76, 77]. In superfluid systems, the dissipation of sound is analogous to

dissipation due to viscosity in normal fluids [73].

There are two types of quantum turbulence. The first type of quantum turbulence is

quasiclassical turbulence (which is also known as Kolmogorov turbulence). Quasiclassical

turbulence is present in superfluid systems when a classical energy cascade from large to

small length scales can be found in a specific range [78, 79]. In this case, the vortex tangle

contains metastable bundles of parallel vortex lines, and energy is transferred from the

scale of vortex bundles down to individual vortices [80]. The second type of quantum

turbulence is ultraquantum turbulence (which is also known as Vinen turbulence). Ultra-

quantum turbulence is characterised by a random tangles of vortices, in the absence of

large scale structures. This form of turbulence has been theoretically predicted [81] and

experimentally observed [82].

It would appear that quantum turbulence is simpler than its classical counterpart, since

vortices are clearly defined structures; unfortunately, there are experimental limitations

to the observation of turbulence in atomic BECs [73]. Firstly, BECs are often formed

within harmonic trapping potentials, which means that quantities such as density and

speed of sound are spatially dependent. This meant that initial realisations of quantum

turbulence were subject to these inhomogeneities [72, 83]. With the recent development of

box-like trapping potentials, however, it has been possible to observe an energy cascade

in a homogeneous BEC [10, 84]. Secondly, turbulent BEC experiments are limited by

the lengthscales available. In the recent experiment of Navon et al. [84], the condensate

was confined in an optical trap of length 2.7 × 10−5m, while the healing length of the

condensate was approximately 1.2 × 10−6m. Since the size of the system and the width

of the vortex core are roughly comparable, it is difficult to extract a reliable scaling law

[73].
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1.4.3 2D Quantum Turbulence

Given that this thesis is a study of two dimensional Bose gases, we end this section with

a discussion of two dimensional quantum turbulence (2DQT). As discussed above, turbu-

lence in 3D is characterised by the transfer of energy from large scales to small scales. On

the other hand, in 2D flows that are subject to small scale forcing, the transport of en-

ergy towards shorter scales is suppressed, and kinetic energy is transferred to larger scales

[85, 86]. This mechanism is often referred to the inverse energy cascade, and has been

shown to be a feature of 2DQT in BECs both theoretically [87–89] and experimentally

[83, 90]. In addition to the energy cascade exhibited by 2DQT, Reeves et al. [91] observed

signatures of an enstrophy cascade in simulations with a large number of vortices.

A result of the inverse energy cascade is the prediction that like-sign vortices will

cluster, leading to the formation of large scale Onsager Vortex structures. These large

scale vortex structures grow from small scales, and were predicted to occur at negative

temperature states [92]. We note that a system with a limited phase space, where in-

creasing energy will eventually decrease the entropy of the system, is defined as a state

with negative absolute temperature [93]. Since Onsager’s original prediction, such vortex

clusters have been studied theoretically [88, 93–96] and experimentally observed [90, 97].

These structures are particularly interesting as they link the spectral condensation of ki-

netic energy at the system scale with the negative-temperature vortex clusters of vortices

predicted by Onsager [88].

BECs are the perfect system in which to study 2DQT, given that they are formed in

trapping potentials which can be controlled to give 2D vortex dynamics [98]. Research

in this area is pertinent in many systems, as realising 2DQT in atomic BECs offers

a highly controllable fluid system which one may use as a test-bed for long standing

questions in classical turbulence. This link is supported by the recent predictions that

the dimensionless Reynolds number might extend to describe superfluid flows [99], and the

observation of the celebrated von Kármán vortex street in a quasi-2D superfluid [100].

Moreover, they may be used to explore different quantum systems which do not have

classical counterparts.

1.5 Thesis Motivation

This thesis contains theoretical and numerical studies into the dynamics of a two dimen-

sional Bose gas. There are two main systems of interest. We begin by considering how

one might model the bulk of a rotating BEC at finite temperature, in the absence of edge

effects. In order to do this, we use the projected Gross Pitaevskii Equation (PGPE), a

classical field equation which is widely used in describing weakly interacting Bose gases

at finite temperature. We present a psuedo-spectral method for evolving the PGPE in an

infinite rotating system, and we show that the numerical error of our method is negligible

for suitable simulation parameters. We find that, allowing our system to relax, the ground
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state is the expected hexagonal lattice of quantized vortices.

As an application of our method, we consider the dynamics of the rotating system

after the ground state has been perturbed. As the amount of noise which is added to the

system is increased, we observe that the lattice ground state melts, to be replaced with a

chaotic system filled with short-lived vortex-antivortex pairs. We mathematically develop

the standard first order correlation function so that it may be used in our system; in doing

so, we find evidence that the system has undergone a phase transition not previously seen

in an unbounded rotating system.

The second system which we consider is that of a BEC in the presence of a disordered

trapping potential. There are two, quite distinct, methodologies by which we study this

problem, dubbed the ‘Dirty Boson’ problem. In the first instance we use the PGPE

to simulate a BEC with a potential which is zero everywhere, other than at a series of

point-like repulsive barriers. These barriers are sufficiently well separated that, in the

space between them, the condensate recovers its background density. To the best of our

knowledge, this is the first time such a system has been considered.

We begin the study of the point-like disordered potential by calculating the critical

velocity for vortex nucleation past a pair of barriers, before comparing this result to

a system with many barriers. We then observe the effect of a disordered potential on

a superfluid BEC which is initially faster than the critical velocity. The speed of the

superfluid is slowed as vortices are nucleated, and we find that the rate at which these

vortices annihilate is significantly different to the rate one would expect in a homogeneous

system. Furthermore, we find that vortex pinning becomes an important phenomenon as

the size of the barriers is increased.

Progressing our survey of BECs in the presence of disorder, we examine a system

where the background trapping potential is disordered and varies continuously over some

scale. In order to consider the dynamics of this system, we use a point vortex model

which takes into account the effect of fluctuations in the background of the fluid in which

the vortices exist. Considering the rate at which the vortices annihilate (which is related

to the growth of the correlation length of the system), we find that, as the amplitude and

scale of the disordered potential increases, there is a significant deviation from the results

found for a homogeneous system.

1.6 Thesis Overview

This thesis is arranged in 5 parts, the contents of which are as follows:

I - Introduction and Theory

• In this Chapter we have introduced Bose Einstein Condensation, superfluidity, and

quantum turbulence in weakly interacting dilute condensates. We have also high-

lighted some key experiments which have been performed to date.



14 CHAPTER 1. INTRODUCTION

• In Chapter 2 we introduce the theoretical groundwork which we will build upon in

the main part of the thesis. We introduce the Gross–Pitaevskii equation (GPE), used

to model Bose gases at zero temperature, and go on to introduce the projected Gross–

Pitaevskii equation (PGPE) which accounts for Bose gases at finite temperature and

plays a central role in this thesis.

• In Chapter 3 we introduce quantum vortices which are an elementary excitation

in superfluids. We describe the mechanisms by which these vortices may be gen-

erated, and discuss the key differences between quantum vortices in two and three

dimensional systems.

II - Rotating Bose Einstein Condensates

• In Chapter 4 we discuss the effect of rotation on a 2D system, and consider previous

approaches to simulate systems of BECs which undergo rotation.

• In Chapter 5 we construct a method for implementing the PGPE in an infinite

rotating system. We show how the convergence of this model depends on simulation

parameters such as the size of the spatial grid, and the number of Landau levels.

We confirm that our method produces a vortex lattice as the ground state of this

system.

• In Chapter 6 we look at the effect of perturbing the lattice ground state of a rotating

system, and compare this to thermal effects in the search for a phase transition in

2D rotating superfluids. We measure some of the statistics which are characteristic

of a BKT transition.

III - The Dirty Boson Problem

• In Chapter 7 we introduce the Dirty Boson Problem, which concerns the presence

of disorder in a Bosonic system. We go on to identify the relationship between the

relative position of two point-like barriers and the critical velocity of such an ar-

rangement. We then show that there is a good mapping between the critical velocity

of a system with two obstacles, and a system with a large number of obstacles.

• In Chapter 8 we establish an initial superflow through a point-like disordered po-

tential, moving faster than the critical velocity, and then study how the superflow

is arrested through the nucleation of vortices and the breakdown of superfluidity.

We then calculate the vortex decay rate as the effective width of the barriers is

increased, and show that vortex pinning becomes a more important effect for these

larger barriers.
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IV - Point Vortex Models

• In Chapter 9 we introduce the point vortex model, and discuss current theoretical

progress in using this model to simulate the dynamics in a BEC. We then introduce a

dissipative point vortex model which takes into account variations in the background

density of the BEC.

• In Chapter 10 we investigate the behaviour of many vortices which are subjected

to a continuously varying, disordered, background potential. These simulations are

carried out using the updated point vortex model described in Chapter 9.

V - Conclusions, Future Work and Appendices

• In Chapter 11 we draw conclusions for the work presented, and suggest future av-

enues of research.

• In Appendix A we present a derivation of the GPE, show how it may be modified

for a 2D system, and derive the hydrodynamic equations of motion. We also detail

the methods used to extract the condensate fraction and the superfluid fraction of

a system.

• In Appendix B we give detailed derivations of the analytic results presented in

Part II.

• In Appendix C we provide information on the ring plaquette method, the means by

which we detect pinned vortices in Part III.

• In Appendix D we provide a detailed derivation of the 2D point vortex model which

takes into account background fluctuations in density. We also present some simple

analytic solutions to this model.
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Chapter 2

Theoretical Modelling of

Bose-Einstein Condensates

In this chapter we introduce the key theoretical models by which we might describe

an atomic Bose-Einstein Condensate. The majority of these models are based on the

Gross-Pitaevskii Equation (GPE). We will discuss the assumptions made when using this

equation, as well as some of its key properties.

2.1 The Mean Field Description

Typically, in order to describe the behaviour of N quantum particles which interact with

one and other, one must construct an N -body wavefunction Ψ (r1, r2, . . . , rN , t), which

obeys the many-body Schrödinger equation. Here the coordinate rj describes the position

of the j-th atom. This approach, however, is prohibitively computationally expensive

when one considers the number of atoms which are present in a BEC experiment, which

is of the order of 106 [104].

Making the assumption that the number of atoms N in the condensate mode is large,

it is possible to neglect the difference between N and N−1 [105]. In this case, the creation

and annihilation operators are approximately commutative and the many-body quantum

operator may be replaced by a macroscopic wavefunction which behaves classically [106].

The evolution of this wavefunction is described by the celebrated Gross-Pitaevskii Equa-

tion (GPE) [107–109]. In the remainder of this section, we give a brief derivation of this

equation; a full derivation, following Ref. [110], can be found in Appendix A.1.

The second quantised Hamiltonian for an interacting Bose gas is

Ĥ(t) =

∫
d3r Ψ̂† (r, t) Ĥs.p. (r, t) Ψ̂ (r, t)

+
1

2

∫
d3r

∫
d3r′Ψ̂† (r, t) Ψ̂† (r′, t)Vint (r, r′) Ψ̂ (r′, t) Ψ̂ (r, t) , (2.1)

where the quantum field operator Ψ̂(r, t) may be written in terms of single-particle wave-

17
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functions as

Ψ̂(r, t) =
∑
j

ψj âj, (2.2)

where âj annihilates a boson located in the ψj state [111]. The first integral in Eqn. (2.1)

corresponds to a non-interacting ideal gas, whose single-particle Hamiltonian is

Ĥs.p. (r, t) = − ~2

2m
∇2 + Vext(r, t), (2.3)

for some external (trapping) potential, Vext, which in general depends on both position

and time. Here ~ is the reduced Planck’s constant, ~ = h/(2π), and m is the mass of

the atomic species. We assume that the gas is sufficiently dilute that 3-body collisions

are rare, so Vint need only describe interactions between two bosons. Assuming that the

temperature of the gas is sufficiently low, the interactions between particles are low energy

collisions which take place on length scales of the s-wave scattering length of the particles,

as. Mathematically, this means that we can model the effective interactions using a delta

function pseudo potential [13]

Vint (r, r′) = gδ (r− r′) , (2.4)

where the interaction strength is given by

g =
4π~2Nas

m
. (2.5)

Experimentally, the sign and magnitude of g can be tuned by using Feshbach resonances

[22]. For g > 0, the interactions are repulsive and the collisions between atoms are

similar to the elastic collisions of two hard spheres. If g < 0 the system has attractive

interactions which, in a homogeneous system, will lead to a collapse of the condensate

[112, 113]. Throughout this thesis we will only consider repulsive interactions, given by

g > 0.

The Bose field operator Ψ̂(r, t) evolves according to the Heisenberg equation of motion

i~
∂

∂t
Ψ̂(r, t) =

[
Ψ̂ (r, t) , Ĥ

]
, (2.6)

and the derivation continues by expanding the commutator on the right hand side of

Eqn. (2.6) to get

i~
∂

∂t
Ψ̂ (r, t) = Ĥ (r, t) Ψ̂ (r, t) +

∫
d3r′′ Ψ̂† (r′′, t)Vint (r, r′′) Ψ̂ (r′′, t) Ψ̂ (r, t) . (2.7)

Assuming that the gas is at zero temperature, so that we may ignore thermal excitations,

and that there are a large number of atoms present in the condensate, N � 1, the many-

body wavefunction can be approximated by a single macroscopic wavefunction. This

means that we may decompose the operator Ψ̂(r, t) as the sum of a mean field term,
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〈
Ψ̂(r, t)

〉
= Ψ(r, t), and a fluctuation term, δΨ̂(r, t), where

〈
δΨ̂(r, t)

〉
= 0. Substituting

this decomposition into Eqn. (2.7) and integrating over the delta function in Eqn. (2.4)

before taking expectation values leads to the Gross-Pitaevskii Equation.

2.2 The Gross Pitaevskii Equation

The result of the mean-field description is the Gross-Pitaevskii Equation (GPE)

i~
∂Ψ

∂t
= − ~2

2m
∇2Ψ + VextΨ + g|Ψ|2Ψ− µΨ. (2.8)

The first term on the right hand side is the kinetic term, and the second term is the

potential term (due to the external potential in which the condensate is trapped). For

a homogeneous system the trapping potential is Vext = 0, but generally Vext may be

a function of both position and time. The third term, g|Ψ|2Ψ, represents the atomic

interactions. In the case where there are no interactions, g = 0, Eqn. (2.8) reduces to the

Schrödinger equation. The final term contains the chemical potential, µ, which will be

introduced in Sec. 2.2.2. Formally, Eqn. (2.8) conserves the particle number even without

the final term, however in the grand-canonical ensemble we require this extra term. We

add it here to ensure that the ground state has no time dependence.

Surprisingly, despite the fact that the GPE is only strictly valid at zero temperature,

the equation still provides a quantitative model for systems of ultra-cold gases at finite

temperature, so long as the temperature is small compared to the critical temperature

for Bose-Einstein condensation [110]. The role of the GPE when the temperature of the

system is finite is discussed in Sec. 2.5.

2.2.1 Conserved Quantities

The GPE is an equation of motion which describes a classical microcanonical field in which

the number of atoms and energy are conserved quantities. The macroscopic wavefunction

is normalised to the total number of atoms, N , so that

N =

∫
d3r|Ψ|2. (2.9)

This is to say that the norm of the wavefunction is conserved since the number of atoms

is conserved. The energy functional of the system may be written as [110]

E [Ψ] =
~2

2m
|∇Ψ|2 + Vext|Ψ|2 +

1

2
g|Ψ|4 − µ|Ψ|2, (2.10)

and the total energy is

E [Ψ] =

∫
d3rE [Ψ] = Ekin + Epot + Eint − Echem. (2.11)
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Here we have identified the terms as the kinetic energy Ekin, the potential energy Epot,

the interaction energy Eint, and the energy due to the chemical potential term Echem.

Providing that the external trapping potential Vext is independent of time, the total energy

is conserved during the evolution of the condensate. The Gross-Pitaevskii Equation may

also be derived by minimising Eqn. (2.10) at fixed µ, where µ is a Lagrange multiplier

ensuring that particle number is conserved [13].

2.2.2 The Time Independent GPE and the Chemical Potential

Suppose that both the wavefunction and the trapping potential are steady, so that

Ψ(r, t) = Ψ0(r) and Vext(r, t) = Vext(r). Then Eqn. (2.8) may be re-written as

µΨ0 = − ~2

2m
∇2Ψ0 + Vext(r)Ψ0 + g|Ψ|2Ψ0, (2.12)

meaning that µ is the eigenvalue of the time-independent GPE. We note that the norm

of the stationary and time-independent solutions are independent of the global phase,

|Ψ (r, t) |2 = |Ψ0(r)|2. Integrating Eqn. (2.12) allows one to write the chemical potential

as

µ =
1

N
(Ekin + Epot + 2Eint) , (2.13)

indicating that µ is a useful energy scale. More generally, for large N , as is required by

the mean-field theory, the difference in ground-state energies EN−EN−1 is small, allowing

us to write µ = ∂E/∂N [13], and so µ can be thought of as the energy required to add a

particle to a system with a large number of atoms, N .

2.2.3 Quasi-Two-Dimensional GPE

Throughout this thesis, we will use the GPE to simulate a 2D dimensional system, while

Eqn. (2.8) describes a 3D system. In this subsection we give a brief derivation as to how

one finds an effective 2D GPE.

Experimentally, a quasi-2D system was first achieved by Görlitz et al. [114], and has

remained an area of experimental interest (see, for example, Refs. [83, 100, 115–124]).

Typically, it is possible to realise a 2D condensate by working in a system which has a

strong harmonic trapping in the z direction,

V3D(r, t) = Vext(x, y, t) +
1

2
mω2

‖z
2. (2.14)

Such a potential results in a highly oblate (“pancake” shaped) condensate when the

trapping frequencies are set so that ~ω‖ � µ. With this tight confinement in the z

direction, the excitation of modes in the z direction is prevented. This leads to a 3D

wavefunction

Ψ3D (x, y, z, t) =
1√
π
√
lz

Ψ2D (x, y, t) exp

(
− z

2

2l2z

)
, (2.15)
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where the z dependence is a Gaussian ground state, and lz is the oscillator length in the

z direction, lz =
√

~/
(
mω‖

)
. The numerical pre-factors of this wavefunction are chosen

so that
∫
d2r |Ψ2D|2 = N . We note, however, that the confinement does not need to be

especially strong in order to observe effectively 2D vortex dynamics; Rooney et al. [98]

found that the critical oblateness to “freeze out” the third dimension is ω‖/ω⊥ ≈ 8.

It is possible to derive a quasi-2D GPE by substituting Eqn. (2.15) into the energy

functional of Eqn. (2.8) and integrating out the z dependence. This yields

i~
∂Ψ2D

∂t
= − ~2

2m
∇2Ψ2D + Vext(x, y, t)Ψ2D + g2D |Ψ2D|2 Ψ2D − µ2DΨ2D, (2.16)

which has exactly the same functional form as Eqn. (2.8), however the quasi-2D inter-

particle attraction parameter is given by

g2D =
g3D√
2πlz

=

√
8π~2as
mlz

, (2.17)

and the 2D chemical potential is

µ2D = µ3D −
1

2
~ω‖. (2.18)

In the remainder of this thesis, where the number of dimensions is clear, we will

drop the 2D subscripts. A detailed derivation of the updated parameters g2D and µ2D

can be found in Appendix A.2. It is possible to construct a similar argument for a 1D

condensate, with updated parameters g1D and µ1D, however this calculation is omitted

from this thesis.

2.2.4 The Thomas-Fermi Profile

Here we introduce an approximation which allows us to find the ground state of a conden-

sate with an analytic treatment. For the purposes of clarity, we only show the solution to

a 1D harmonic trap in Fig. 2.1. In general, however, the Thomas-Fermi approximation

can be applied to a wide variety of trapping potentials.

Consider a 1D condensate which is trapped by a potential Vext(x). Suppose that we

can ignore the kinetic term, then the time-independent GPE simplifies to

µΨ = VextΨ + g|Ψ|2Ψ. (2.19)

This approximation is known as the Thomas-Fermi approximation, and is well suited to

steady states of condensates which are subject to strong repulsive interactions (the latter

condition is required so that the condensate is flattened in the centre of the trap). The
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Figure 2.1: The density profile of a condensate in a harmonic trap. The density profile
given by the Thomas-Fermi solution, red dashed line, and the density profile given by
numerically integrating the GPE, blue solid line.

wavefunction of this condensate is then given by

ΨTF =

√
µ− Vext(x)

g
Θ (µ− Vext(x)) , (2.20)

where Θ (·) is the Heaviside step-function, used to ensure that the density is non-negative.

Using the Heaviside step-function leads to an inequality which tells us where the wave-

function is non-zero, µ ≥ Vext(x), which in general we can solve for x. This leads to the

Thomas-Fermi radius, RTF , which satisfies µ = Vext (RTF ).

In the case where a one-dimensional condensate is in a harmonic trap, Vext(x) =

mω2
xx

2/2, the Thomas-Fermi radius is given by RTF =
√

2µ/mω2
x. A plot of the Thomas-

Fermi density for a harmonically trapped condensate is shown in Fig. 2.1. Note that the

density has the form of an inverted parabola and is an excellent fit in the centre of the

trap. There is a small disagreement between the Thomas-Fermi and numerical solutions

at the edge of the trap, since gradients of the condensate are not negligible here.

2.3 Hydrodynamic Interpretation

The GPE is closely linked to hydrodynamic equations of motion, as we will uncover in

this section. As a complex field, it is often enlightening to re-write the wavefunction Ψ in

the form

Ψ (r, t) =
√
ρ (r, t)eiθ(r,t), (2.21)
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which we shall refer to as a Madelung transform [125]. This form allows us to identify

the density of the wavefunction, ρ (r, t) = |Ψ(r, t)|2. We are also able to identify the fluid

velocity field, v which is proportional to the gradient of the phase,

v(r, t) =
~
m
∇θ (r, t) , (2.22)

meaning that the physical interpretation of the phase of the condensate is as the velocity

potential.

Substituting the Madelung transform, Eqn. (2.21), into the GPE, Eqn. (2.8), and

considering real and imaginary parts yields two equations. Considering the imaginary

parts, one arrives at the continuity equation

∂ρ

∂t
+∇ · (ρv) = 0. (2.23)

This equation describes the conservation of the mass of the fluid. We note, if we multiply

the GPE Eqn. (2.8) by Ψ∗(r, t) and subtract the complex conjugate of the resulting

equation, then we can derive a similar continuity equation1

∂

∂t
|Ψ|2 +∇ ·

[
~

2mi
(Ψ∗∇Ψ−Ψ∇Ψ∗)

]
= 0. (2.24)

Comparing the forms of Eqn. (2.23) and Eqn. (2.24), we can identify the condensate

velocity

v(r) =
~

2mi

[
Ψ∗(r)∇Ψ(r)−Ψ(r)∇Ψ∗(r)

|Ψ(r)|2
]
, (2.25)

and from there, the current density of the wavefunction

J(r) =
~

2mi
[Ψ∗(r)∇Ψ(r)−Ψ(r)∇Ψ∗(r)] , (2.26)

which is equivalent to the result J = ρv.

If, on the other hand, we substitute Eqn. (2.21) into Eqn. (2.8) and consider the real

parts, we arrive at

∂v

∂t
+ (v · ∇) v = −1

ρ
∇P −∇Π− 1

m
∇Vext, (2.27)

which is similar in form to the Euler equation for an inviscid fluid. We introduce P =

−gρ2/(2m) which is a pressure term, and a quantum pressure term

Π =
~2

2m2

1√
ρ
∇2√ρ. (2.28)

We note that the pressure P depends only on the density, so surfaces of constant density

1This assumes that the external trapping potential Vext is real, which is physically the case.
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Figure 2.2: The density of the condensate wavefunction, |Ψ|2, (blue) in the presence of
a semi-infinite hard wall potential, V (x) = ∞ when x < 0 and V (x) = 0 when x ≥ 0,
(orange). The stationary state is given analytically as Ψ(x) = ρ∞ tanh (x/ξ), where ξ is
the healing length. The black dotted line is added as a guide to the eye to show the scale
on which the condensate recovers the background density, ρ∞.

also have constant pressure. The quantum pressure term is a quantum effect (Π = 0 if

~ = 0), which also depends only on the density. The quantum pressure term provides

a resistance to deformations of the shape of the condensate (i.e. against bending). In a

uniform condensate, the quantum pressure is zero as the density is constant.

The coupled equations Eqn. (2.23) and Eqn. (2.27) are collectively known as the

superfluid hydrodynamic equations, and their derivation from the GPE can be found in

Appendix A.3.

2.3.1 The Healing Length

We have seen in the previous sub-section that the main difference between the superfluid

hydrodynamic equations Eqn. (2.27) and the inviscid Euler equation is the addition of a

quantum pressure term Π. If we suppose that the length-scales over which the condensate

responds to a large perturbation is ξ, then [ρ−1∇P ] ∼ gρ∞/ (ξm) and [∇Π] ∼ ~2/ (m2ξ3),

where ρ∞ is the background density of the condensate (far away from the obstacles). The

length-scale on which the two terms are comparable is when ξ is given by

ξ =
~√
gmρ∞

. (2.29)

Close to an obstacle (for lengths much smaller than ξ) the quantum pressure term domi-

nates Π� P , while far away from an obstacle (lengths much greater than ξ) the normal

pressure term dominates, P � Π. The length-scale ξ is called the healing length, since it

is literally the length from an object at which the density is “healed” to the background

value. A sketch of this is provided in Fig. 2.2.
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2.4 Transforming the Reference Frame

2.4.1 Rotation

The dynamics of a rotating Bose gas can be studied by transforming the GPE into the

rotating frame. The difficulty with rotating traps is that in the laboratory frame the po-

tential is generally time-dependent [13]. Instead, it is numerically convenient to transform

the GPE into the reference frame which is rotating with the trapping potential. This is

possible by remembering that the angular momentum operator for a particle is r × p,

where p = −i~∇ is the usual quantum momentum operator [126]. For a gas which is

rotating with angular momentum Ω, the GPE is

i~
∂Ψ

∂t
=

[
− ~2

2m
∇2 + Vext + g|Ψ|2 − µ−Ω· (r× p)

]
Ψ. (2.30)

This equation and its applications are discussed in detail in Part II.

2.4.2 Linear Translation

We can consider a system in which an obstacle (imposed via the external trapping poten-

tial) is dragged through the fluid at some velocity vobst. In such a system, the coordinate

of the obstacle reference frame is r = rL + vobstt, and the lab-frame wavefunction is

Ψ(r, t) = ΨL(r, t). The GPE governing the lab-frame wavefunction is given by

i~
∂Ψ

∂t
=

[
− ~2

2m
∇2 + Vext(r) + g|Ψ|2 − vobst · p− µ

]
Ψ, (2.31)

where the Gallilean shift to the obstacle frame (from the lab-frame) is given by the vobst ·p
term, with p = −i~∇ the usual quantum momentum operator [127]. This equation and

its application are discussed in further detail in Part III.

2.5 c-Field Treatments

Thus far, we have introduced the GPE which applies to a dilute and weakly-interacting

BEC at zero temperature. The GPE describes the evolution of the wavefunction Ψ,

which (in the zero temperature limit) is also the condensate mode. In BEC experiments,

however, the condensate fraction is less than one, and so the consideration of thermal

excitations is important in determining the dynamics of the system. In this case, the

wavefunction Ψ is not the condensate mode, rather it is the superposition of the conden-

sate and non-condensate modes. As a non-linear partial differential equation, the GPE

enables mixing between modes, and a natural question arises as to how to deal with this

mixing.
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Consider a system where the Bose operator may be written as a superposition of single

particle basis functions ψk,

Ψ̂ (r) =
∑
k

âkψk(r). (2.32)

These modes are labelled by the wave-numbers k, which can be related to momentum by

p = ~k, and the operator âk annihilates an atom in mode k. We may then separate Ψ̂ (r)

into the c-field, C, and incoherent, I, regions. The projected Gross-Pitaevskii Equation

(PGPE) sits within a broader range of techniques known as the c-field methodology [128–

133].

The c-field region

The first such region is the c-field region, so called because the modes in this region may be

treated classically. In the same way that the GPE treats the highly occupied condensate

mode as a classical field in a BEC at zero temperature, we assume that the lower-energy

modes comprising the c-field region are highly occupied, (i.e. the number of atoms in a

given mode is much greater than unity), meaning that quantum fluctuations are small. A

cut-off energy, Ecut is chosen to ensure that the modes in the c-field region are classical.

Of course, the choice of Ecut must not affect the underlying physics of the system.

The incoherent region

The second region is referred to as the incoherent region, with energy Ecut < E < Emax

for some maximum energy Emax, the choice of which is discussed by Blakie et al., [133].

Essentially, Emax cuts off high momentum modes to ensure that the effective field the-

ory considers length scales which are greater than the effective range of the inter-atomic

potential, the length scales of interest in ultra-cold atom experiments. The high energy

modes contained within the incoherent region are not well occupied, and so quantum

effects are significant. The quantum mechanical treatment required by the incoherent

region will be discussed in Sec. 2.5.4 and 2.5.5. A schematic of the c-field and incoherent

regions can be found in Fig. 2.3.

2.5.1 The PGPE

The separation between the c-field and incoherent regions is implemented by imposing

the projection operator P in the basis of non-interacting single particle modes, ψk. That

is to say,

P
[
Ψ̂(r)

]
=
∑
k∈C

âkψk(r). (2.33)

This projection, introduced by Davis et al. in the context of a homogeneous 3D system

[129], is performed by setting all modes outside of some 2D circle (3D sphere), whose
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radius is set by the cut off energy, to zero. This can be directly implemented in the GPE

giving it the advantage of making it relatively computationally simple. The PGPE is

given by [129]

i~
∂Ψ

∂t
= P

{[
− ~2

2m
∇2 + Vext(r) + g|Ψ|2 − µ

]
Ψ

}
, (2.34)

which ultimately is a classical field equation for simulating a weakly interacting Bose

gas at finite temperatures. The equation is a microcanonical equation of motion for the

system in the sense that the atom number and total energy are conserved quantities; this

requires all couplings to the incoherent region I to be neglected.

The importance of implementing the projection in the correct non-interacting single-

particle basis has been demonstrated [134]. Ideally, the numerical projection operation

used to evolve the equation should be numerically exact in terms of the relevant single-

particle basis, necessitating a (pseudo-)spectral approach to numerical implementations.

The GPE is, generally speaking, intractable analytically and so must be solved numer-

ically. This can lead to issues involving mode aliasing and the choice of how to discretise

a spatial gird. For this reason, it is advantageous to solve the PGPE since an explicit pro-

jector defines the calculation without concerns over the numerical representation2. The

use of a projector also prevents aliasing problems, since higher-modes are truncated. For

some systems, it is also possible to find exact quadrature rules for the eigenfunctions of the

single particle Hamiltonian, which makes it numerically efficient to solve the PGPE using

spectral methods. The PGPE was originally introduced in the context of a homogeneous

3D Bose gas [128] and has been extended to describe trapped gases [132], as well as a

Bose gas within a harmonic trapping potential subject to long-range dipolar interactions

[135].

2.5.2 The validity of the PGPE

By construction, the modes which are described by the PGPE are highly occupied and

so quantum fluctuations may be neglected, and we don’t need to add quantum noise in

numerical treatments. This reduces the number of conditions which must be fulfilled in

order for the PGPE to be valid, by comparison with the methods which we shall discuss

later in this section.

The first essential validity condition of the PGPE is that the modes which are included

in the c-field provide a good basis. That is to say that the cut off energy, Ecut, is sufficiently

large that the eigenfunctions of the single particle Hamiltonian provide a good basis for

the interacting modes.

The second essential validity condition of the PGPE is that the modes which are in-

cluded in the c-field are highly occupied. This condition is essential to the construction

of the PGPE, nevertheless it can not be understated that the cut off energy, Ecut must

2In other words, irrespective of the number of grid points used, provided enough points are used to
stop aliasing, the projection operator controls the number of modes which are evolved ensuring that the
conserved energy of the system is correctly distributed.
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Figure 2.3: Schematic of the c-field and incoherent regions for a harmonically trapped
condensate. Panel (a), a sketch of the PGPE regime - all of the modes below the energy
cut-off Ecut are highly occupied, allowing for a mean-field treatment. Panel (b), a sketch
of the TWPGPE regime - modes below the energy cut-off Ecut may be highly or sparsely
occupied. Panel (c), a sketch of the SPGPE regime - the c-field region is coupled to the
incoherent region. Figure re-drawn based on Ref. [133].

be chosen so that the occupation of all of the modes below Ecut is greater than unity. Al-

though the precise choice of Ecut is subtle, as it should not affect the underlying physics of

the simulation, only a few studies have considered the impact of this choice on simulation

results [136, 137].

The validity of the PGPE has also been confirmed by comparison with Quantum

Monte Carlo simulations [138], although these Monte Carlo simulations are necessarily

limited to equilibrium statics of a system, rather than dynamics.

2.5.3 The Dissipative PGPE

Neither the GPE in Eqn. (2.8) nor the PGPE in Eqn. (2.34) contains a term which

accounts for damping, by contrast both equations conserve particle number and energy.

In real experiments, however, there exists a damping of collective excitations [139, 140]

which is due to finite temperature effects [59, 141–143]. Throughout this thesis we will

use the dissipative PGPE (dPGPE) which is used to model a system which relaxes to

equilibrium. This equation was introduced by Choi et al. [144], and has also been adapted

by (for example) Refs. [145–149]. The argument for the dPGPE which we present here

closely follows that of Ref. [144].

We wish to extend the GPE to describe a damping process which will eventually

lead to an equilibrium state. As discussed earlier, a condensate in equilibrium at zero

temperature is described by the time independent GPE, Eqn. (2.12). We now consider

the equation of motion,

i~
∂Ψ

∂t
= L̂Ψ. (2.35)
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Since we wish to describe a relaxation process, the norm and energy of Ψ should not be

conserved. Physically, this corresponds to the interaction of the condensate with a thermal

cloud, by which the condensate may lose (or gain) energy [147, 150]. Mathematically, this

means that the operator L̂ can not be Hermitian. Suppose we write the operator L̂ as

the sum of a Hermitian and anti-Hermitian operators,

L̂ = Ĥ + D̂, (2.36)

where the Hermitian operator Ĥ, which describes the condensate at equilibrium, is given

by Eqn. (2.12). The anti-Hermitian operator D̂ describes the process by which equilibrium

is approached, and should vanish at equilibrium. This suggests that the anti-Hermitian

operator D̂ should be written as

D̂Ψ = iΛ

[
− ~2

2m
∇2 + Vext(r) + g|Ψ|2 − µ

]
Ψ, (2.37)

where Λ is a dimensionless parameter which is inversely proportional to the system’s

relaxation time. For damping, Λ < 0 and for the remainder of this thesis we shall write

Λ = −γ, where γ is the damping parameter. We can consider γ to be an estimate of the

rate at which an excited component turns into the condensate [144]. The argument above

leads to the damped PGPE, which is written as

i~
∂Ψ

∂t
= (1− iγ)P

{[
− h2

2m
∇2 + Vext (r) + g|Ψ|2 − µ

]
Ψ

}
. (2.38)

For good choices of Ψ and γ (i.e. a wavefunction Ψ which is close to the equilibrium

condition, and a physical value of γ, ideally 0 ≤ γ ≤ 1), Eqn. (2.38) will evolve to the

ground state of the system.

Other authors [147, 149] write the dPGPE in alternative form

(1 + iγ) ~
∂Ψ

∂t
= P

{[
− h2

2m
∇2 + Vext (r) + g|Ψ|2 − µ

]
Ψ

}
. (2.39)

Multiplying this equation by (1− iγ) and dividing by (1 + γ2) yields

i~
∂Ψ

∂t
=

(1− iγ)

(1 + γ2)
P
{[
− h2

2m
∇2 + Vext (r) + g|Ψ|2 − µ

]
Ψ

}
, (2.40)

where the right hand side of this form differs from that of Eqn. (2.38) by a factor of

(1 + γ2). Typical values of the damping parameter range from γ = 0.01 [149] to γ = 0.03

[144, 147], so this difference is small. Later in this thesis, however, we shall use the “over-

damped” dPGPE, which is Eqn. (2.38) with γ = 1, to find the ground state of a system;

here we would expect the dynamics of the system to be different, although the ground

state would be the same.
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2.5.4 The Truncated Wigner PGPE

While introducing the PGPE in the previous section, we explained the importance of the

modes in the c-field region having an occupation which is greater than unity. This is a

requirement of the PGPE, to ensure that such modes may be treated classically. A sensible

correction to this methodology would be to determine how such a system may evolve if

we relax the condition that all of the modes in C are highly occupied, and consider the

resulting quantum fluctuations. Broadly speaking, this motivates the Truncated Wigner

Projected Gross-Pitaevskii Equation (TWPGPE) which we will discuss in this section.

Throughout this sub-section we assume that the incoherent region I is unoccupied, and

that there are modes within the c-field region C which are unoccupied, necessitating a

quantum treatment. This is a c-field method which extends the PGPE to a “quantum”

version of the PGPE.

The GPE facilitates mixing between modes, however, special consideration must be

made for modes within the c-field region which have a low occupation. In a real system,

this isn’t a problem since quantum fluctuations allow modes which initially have zero

population to grow without requiring seeding [151]. In the classical field simulations which

we have discussed, a solution to this problem was proposed by Berloff and Svistunov [152]

who evolved a homogeneous system whose initial condition was to fill every mode with

uniform plane waves with random phases. This is a good first approximation, since the

GPE will evolve to the correct equilibrium state.

It is also possible to study the dynamics of a system by using ‘Stochastic Phase Space

Methods’. These methods involve sampling initial conditions from probability distribu-

tions, and evolving these initial conditions by considering them as stochastic trajectories

which each obey classical mean field dynamics [151]. The choice of probability distribu-

tion is made so as to ensure that the initial condition is as close as possible to the initial

thermal distribution or quantum statistical correlation. The best description of classical

mean-field dynamics is the Wigner distribution, since it can be shown that a Wigner

function exists for any density operator [153, 154]. The ‘Truncated’ Wigner approxima-

tion corresponds to the fact that third-order derivative terms which come from the full

evolution equation of the Wigner function are ignored, an assumption which is rigorously

argued in Ref. [155]. The result is therefore in the form of a Liouville equation, meaning

that it describes an ensemble of trajectories obeying a classical equation of motion [156].

The TWPGPE methodology prescribes that initial conditions which include a random

element which represents half a quantum occupation per mode are evolved with the PGPE,

Eqn. (2.34). The initial conditions are given by

Ψ (r, 0) = n0ψ0 +
1√
2

∑
n.c.

ψk (nk + αk + iβk) (2.41)

where n0 is the condensate number, and ψ0 is the condensate mode. The sum on the right
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hand side is taken over the non-condensate modes3, with nk the equilibrium occupation of

the k-th mode. The real numbers αk ∼ N(0, 1) and βk ∼ N(0, 1) are independent random

variables which are normally distributed. The inclusion of the noise terms in Eqn. (2.41)

mimic the quantum mechanical vacuum fluctuations present in c-field modes with low

occupation.

An important distinction between the TWPGPE describer here, and the formulation

of Steel et al. [153] is the implementation of the projection operator, P . Implementing

the projector imposes a level of control over the vacuum noise; without the projector the

TWPGPE is only accurate for simulations which are limited to relatively short times or

low temperatures [110, 133], since adding noise in all modes adds to the energy of the

system, which may cause non-physical “heating” and damping effects [136]. It is also

worth noting that the TWPGPE will not result in an accurate description of a system if

the number of basis modes which are considered is too large, since vacuum noise is added

to every mode in the system [156]. The TWPGPE is most effective in the regime where

quantum processes dominate thermal effects [110].

2.5.5 The SPGPE

We have now introduced two GPE-like methods which are valid for Bose gases which are

at finite temperature. The PGPE is a simple extension of the GPE, and is valid when

every mode in the c-field region has an occupation number which is greater than one.

The Truncated Wigner PGPE relaxes this condition, and describes a c-field where some

modes may have low or no occupation. However, on evolution, the TWPGPE necessarily

treats the entire system as a classical microcanonical system, which neglects the presence

of a thermal cloud.

In this section, we introduce the Stochastic Projected Gross-Pitaevskii Equation (the

SPGPE) [131, 134, 157, 158] which is an equation of motion for the c-field region C coupled

to the incoherent region I which comprises of high-energy atoms assumed to be in thermal

equilibrium. Unlike the PGPE and TWPGPE which are microcanonical approaches, the

SPGPE is a grand canonical approach as the particle number and energy of the c-field

is not conserved; the c-field is coupled to a thermal reservoir, which in this case is the

thermally occupied modes in the I-region, which is parameterised by its temperature T

and chemical potential µ. The SPGPE can be thought of as a higher temperature theory

of the PGPE.

The simple growth SPGPE can be written

i~dΨ(r, t) = P
[
LΨ(r, t) dt+ i

γ~
kBT

(µ− L) Ψ(r, t) dt+ i~dWγ(r, t)

]
(2.42)

3The identification of the condensate and non-condensate modes within the c-field methodology are
described in Chapter 8.
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where

LΨ(r, t) =

[
− ~2

2m
∇2 + Vext(r, t) + g|Ψ(r, t)|2

]
Ψ(r, t), (2.43)

and the complex noise associated with the growth of the condensate is dWγ(r, t), whose

mean and variance is given by the equal time correlation

〈
dW ∗

γ (r, t)dWγ (r′, t)
〉

= 2γδ (r, r′) dt. (2.44)

The SPGPE is a stochastic differential equation, since the coupling between the c-field

region C and the thermally occupied I-region introduces damping (as high energy atoms

may transfer from C to I, reducing the energy of the condensate) and the process by which

the condensate grows, through the collision of atoms, is stochastic. It has been exten-

sively used in studies describing condensate formation in one [157] and two [159] spatial

dimensions, as well as vortex nucleation in a rotating gas [134], and the equilibration of

binary Bose gases [160]. The SPGPE is appealing for these and other finite temperature

studies since one may prescribe the temperature of the system at the outset, rather than

having to extract it a priori. It is also commonplace to use initial conditions such as those

described in the previous system on the TWPGPE, Eqn. (2.41), as an initial condition for

the SPGPE. Generally, one must average over an ensemble of initial conditions evolved

by the SPGPE to determine the properties of a given system.

The version of the SPGPE that we have presented here is known as the ‘simple growth’

SPGPE as it neglects scattering terms. These terms are numerically challenging to in-

clude, and are expected to be far less significant than the terms which are included in

Eqn. (2.42) which describes the interaction between the thermal cloud on the condensate

[133]. Perhaps a more concerning limitation is the assumption that the thermal cloud to

which the c-field modes are coupled by the SPGPE is stationary. For non-equilibrium

systems, we would expect that this cloud should be treated dynamically. In fact, there is

a large body of work which accounts for these dynamics by coupling a dissipative GPE

description of the condensate mode (allowing particles to enter and leave the condensate)

to a kinetic Quantum Boltzmann equation which describes the thermal cloud. This treat-

ment, the ZNG scheme [161], fully describes the back action of the dynamical thermal

cloud on the condensate mode. It should be emphasised that the ZNG scheme is not a

c-field based method, as it does not separate modes into the regions C and I.
Throughout this thesis, we will only use the PGPE method described above. For an

excellent review of the methods discussed in this section, as well as other methods available

for modelling Bose gases at finite temperature, we direct the reader to Refs. [133, 151].



Chapter 3

Superfluid Vortices

This last chapter in the introductory part of this thesis will introduce the theory and

experimental observation of vortices in a BEC. Unlike vortices in classical fluids, which

may have arbitrary size and circulation, these quantized vortices are a striking property

of superfluids as they constrained to be of fixed size and integer charge.

3.1 Quantized Circulation

Consider a fluid which is rotating with constant angular velocity Ω. A classical fluid

which rotates with this angular velocity will rotate, in stationary conditions, as a solid

body, with velocity field

v = Ω× r. (3.1)

The vorticity of a fluid flow is defined as the curl of the velocity field [69], ω = ∇ × v,

and so in a fluid rotating as a solid body the vorticity is

ω = ∇× v = 2Ω, (3.2)

meaning that it is uniform and equal to twice the angular velocity. In Sec. 2.3, we intro-

duced the Madelung transform Ψ =
√
ρ exp (iθ) for the wavefunction Ψ, and identified

that the velocity of a superfluid is given by Eqn. (2.22),

v =
~
m
∇θ.

The vorticity of the superfluid therefore is

ω =
~
m
∇×∇θ = 0, (3.3)

implying that the superfluid velocity is irrotational. The second equality in Eqn. (3.3)

assumes that θ is a smooth, differentiable function; it is possible, however, for θ to have

singularities around which the value of θ varies by 2π. If we take some 2D region of the

33
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fluid R which contains such a singularity, we can integrate over this surface using Stokes’

theorem to get ∫
R
ω · dr2 =

∫
R
∇× v · dr2 =

∮
∂R

v · dr, (3.4)

where ∂R is a closed curve bounding R. The superfulid velocity v is a conservative field

since it can be written as the gradient of a scalar function, Eqn. (2.22), and so this integral

does not depend on the path about the singularity. However, since the curve is closed,

the wavefunction Ψ must be equal at the initial and final points of ∂R, which means that

the circulation of the fluid is ∮
∂R

v · dr =
2π~
m

n, (3.5)

where n ∈ Z. If n is not zero (and hence the vorticity does not vanish), a singularity must

exist in this region of fluid implying that the curl of the velocity field may be written as

∇× v =
2π~
m

δ (r− rv) n̂, (3.6)

where n̂ is normal to the surface R, and rv is the location of the singularity [162]. At

the centre of the singularity, the phase is multi-valued and so to ensure that Ψ is single-

valued the density must vanish. In a 3D condensate, these singularities are quantized

vortex lines, while in 2D these are quantized vortex points [126]. A sketch of the density

and phase of a vortex core can be found in Fig. 3.1. The integer n is a quantity known

as the charge of the vortex, and by convention a vortex with negative charge may be

called an “antivortex”. Quantized vortices are topologically protected – they can only be

annihilated by colliding with a vortex with an opposite charge, or by colliding with the

edge of the condensate.

Since these quantized vortices were observed experimentally in a BEC [53], they have

been a widely studied quantum phenomenon [72, 142, 163–169]. Systems with a large

number of vortices have been revealed to display a rich selection of dynamics such as

the dipole interactions of vortices with opposite charges [170, 171], the mechanisms of

vortex lattice formations [134, 147, 172–175], and vortex turbulence [72, 83, 176–181].

Quantum vortices provide an excellent testing ground for more general vortex systems,

such as the shedding of vortices from moving obstacles [51, 182–185] which can lead to

von Kármán vortex streets [100, 186], vortex dynamics in a constricted flow such as a

Josephson junction [187] or an acoustic oscillator circuit [188], vortex scattering [189–191]

and pinning [192], leapfrogging [193], vortex knots [194, 195] and clustering [25, 88, 93,

196].
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Figure 3.1: Panel (a), the density profile of a vortex core positioned at the origin, deter-
mined by numerically integrating the GPE. Panel (b), the phase of a vortex core; arrows
indicate the velocity field about the core of the vortex.

3.2 Rotating BECs

Transforming to a frame of reference which is rotating with angular velocity Ω, as in

Eqn. (2.30), the energy functional given by Eqn. (2.10) becomes

EΩ [Ψ] = E [Ψ]−Ω · (r× p) Ψ, (3.7)

which has a total energy

E [Ψ] =

∫
d3r

[
~2

2m
|∇Ψ|2 + Vext(r)|Ψ|2 +

1

2
g|Ψ|4 − µ|Ψ|2

]
−Ω ·

∫
d3r [Ψ∗ (r× p) Ψ] .

(3.8)

Finding the ground state of the system now explicitly involves the angular velocity; since

the last term in Eqn. (3.8) lowers the total energy, the ground state must be one which

includes positive angular momentum [197].

As discussed in Sec. 3.1, unlike a normal fluid which rotates as a solid body, a superfluid

is irrotational except around a vortex line, where the circulation is quantized in units of

2π~/m. Since each vortex line has identical quantization, Feynman [198] argued that a

dense array of vortex lines can mimic solid body rotation, when the vorticity is coarse-

grained over a large number of quantized vortices. If we consider the circulation of a fluid

computed around a closed contour ∂R containing Nv vortices, the quantization condition

of Eqn. (3.5) ensures that the circulation is 2π~Nv/m. One can also use the result for

solid body rotation to compute the circulation∫
R
∇× v · d2r =

∫
R

2Ω · d2r = 2Ω|R|, (3.9)

where |R| is the area of the region R. Comparing the two gives the average vortex density
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in a rotating superfluid,

Nv =
Nv

|R| =
Ωm

π~
, (3.10)

which is Feynman’s relation [198]. The area per vortex is obtained by inverting Eqn. (3.10)

to get
1

Nv

=
π~
Ωm

, (3.11)

meaning the inter-vortex spacing decreases as the rotation speed increases. The results

above suggest that a quantum fluid rotating with angular velocity Ω mimics solid body

rotation by distributing quantized vortex lines as uniformly as possible; this was exper-

imentally confirmed by Abo-Shaeer et al. [199] who observed a “crystallized” vortex

lattice. These Abrikosov lattices were originally predicted to exist in type-II supercon-

ductors, where the nodes of the lattice are lines of magnetic flux [200]. It was later shown

that the lowest energy configuration of this lattice in an infinite system is a triangular

lattice [201].

For the remainder of this thesis, since we are working in a 2D system, we will assume

that the axis of rotation is ẑ, so that the angular velocity Ω = Ωẑ.

3.3 Experimentally Generating Vortices

In a typical experiment involving rotating superfluid helium, both superfluid and normal

liquid helium are contained within a cylindrical bucket which is then rotated around the

axis of the cylinder. Initially the normal fluid rotates with the bucket as a rigid body; as

the angular velocity of the bucket is increased, a vortex line is nucleated at the edge of

the container and then moves towards the centre of the bucket (which is also the axis of

rotation). Spinning the bucket faster and faster nucleates more vortex lines which then

form a lattice [201, 202]. Unfortunately, this procedure does not work for an atomic BEC,

as a BEC is typically created in a harmonic optical and or magnetic trap; unlike a bucket

containing liquid helium, this trap does not have any surface roughness to assist with

vortex nucleation [203].

In this section, we describe some of the means by which vortices have been realised

experimentally in a BEC. We note that, while we presented an extensive list of methods

for experimentally realising quantum vortices, it should be emphasised that this list is

not exhaustive. Processes such as thermal quenches [204] similar to the Kibble-Zurek

mechanism [205–207], overlapping condensates from different lattice sites [115], and many

others may be employed to generate vortices in BECs, ensuring that it remains an active

and exciting area of research.
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is constant … ! v! " 2#" . For a superfluid,
the circulation of the velocity field, v!, is
quantized in units of $ " h/M, where M is the
atomic mass and h is Planck’s constant. The
quantized vortex lines are distributed in the
fluid with a uniform area density (18)

nv " 2#/$ (1)

In this way the quantum fluid achieves the
same average vorticity as a rigidly rotating
body, when “coarse-grained” over several
vortex lines. For a uniform density of vorti-
ces, the angular momentum per particle is
Nv%/2, where Nv is the number of vortices in
the system.

The number of observed vortices is plotted
as a function of stirring frequency # for two
different stirring times (Fig. 3). The peak near
60 Hz corresponds to the frequency #/2& "
vr/'2, where the asymmetry in the trapping
potential induced a quadrupolar surface excita-
tion, with angular momentum l " 2, about the
axial direction of the condensate (the actual
excitation frequency of the surface mode v "
'2vr is two times larger due to the twofold
symmetry of the quadrupole pattern). The same
resonant enhancement in the vortex production
was observed for a stiff trap, with (r " 298 Hz
and (z " 26 Hz (aspect ratio 11.5), and has
recently been studied in great detail for small
vortex arrays (19).

Far from the resonance, the number of vor-
tices produced increased with the stirring time.
By increasing the stir time up to 1 s, vortices
were observed for frequencies as low as 23 Hz
(!0.27(r). Similarly, in a stiff trap we observed
vortices down to 85 Hz (!0.29 (r). From Eq. 1
one can estimate the equilibrium number of
vortices at a given rotation frequency to be
Nv " 2&R2#/$. The observed number was
always smaller than this estimate, except near
resonance. Therefore, the condensate did not
receive sufficient angular momentum to reach
the ground state in the rotating frame. In addi-
tion, because the drive increased the moment of
inertia of the condensate (by weakening the
trapping potential), we expect the lattice to ro-
tate faster after the drive is turned off.

Looking at time evolution of a vortex lattice
(Fig. 4), the condensate was driven near the

quadrupole resonance for 400 ms and then
probed after different periods of equilibration in
the magnetic trap. A blurry structure was al-
ready visible at early times. Regions of low
column density are probably vortex filaments
that were misaligned with the axis of rotation
and showed no ordering (Fig. 4A). As the dwell
time increased, the filaments began to disentan-
gle and align with the axis of the trap (Fig. 4, B
and C), and finally formed a completely or-
dered Abrikosov lattice after 500 ms (Fig. 4D).
Lattices with fewer vortices could be generated
by rotating the condensate off resonance. In
these cases, it took longer for regular lattices to
form. Possible explanations for this observation
are the weaker interaction between vortices at
lower vortex density and the larger distance

they must travel to reach their lattice sites. In
principle, vortex lattices should have already
formed in the rotating, anisotropic trap. We
suspect that intensity fluctuations of the stirrer
or improper beam alignment prevented this.

The vortex lattice had lifetimes of several
seconds (Fig. 4, E to G). The observed sta-
bility of vortex arrays in such large conden-
sates is surprising because in previous work
the lifetime of vortices markedly decreased
with the number of condensed atoms (3).
Theoretical calculations predict a lifetime in-
versely proportional to the number of vortices
(5). Assuming a temperature kBT ! ), where
kB is the Boltzmann constant, the predicted
decay time of ! 100 ms is much shorter than
observed. After 10 s, the number of vortices

Fig. 1. Observation of
vortex lattices. The
examples shown con-
tain approximately
(A) 16, (B) 32, (C) 80,
and (D) 130 vortices.
The vortices have
“crystallized” in a tri-
angular pattern. The
diameter of the cloud
in (D) was 1 mm after
ballistic expansion,
which represents a
magnification of 20.
Slight asymmetries in the density distribution were due to absorption of the optical pumping light.

Fig. 2. Density profile through a
vortex lattice. The curve repre-
sents a 5-)m-wide cut through a
two-dimensional image similar to
those in Fig. 1 and shows the high
contrast in the observation of the
vortex cores. The peak absorption
in this image is 90%.

Fig. 3. Average number of vorti-
ces as a function of the stirring
frequency # for two different
stirring times, (F) 100 ms and
(!) 500 ms. Each point repre-
sents the average of three mea-
surements with the error bars
given by the standard deviation.
The solid line indicates the equi-
librium number of vortices in a
radially symmetric condensate
of radius Rr " 29 )m, rotating at
the stirring frequency. The arrow
indicates the radial trapping
frequency.
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Figure 3.2: An experimental image of a BEC forced to rotate by two blue-detuned laser
beams rotating symmetrically around the condensate. The result is a triangular vortex
lattice containing approximately (a) 16 vortices, (b) 32 vortices, (c) 80 vortices, and (d)
130 vortices. Image taken from [199], reprinted with permission from AAAS.

3.3.1 Artificial Phase Imprinting

Vortices were first realised in an atomic BECs by using a phase imprinting method on

a two component BEC [53]. The method by which vortices are created using a phase

imprinting method is described theoretically by Dobrek et al., [208]. Essentially, a laser

beam is passed through an absorption plate which has a spatially dependent absorption

coefficient, on to the condensate. The spatial dependence varies linearly around axis of the

plate, varying the transfer of orbital angular momentum from the laser to the condensate

[209], and causing a relative phase to be imprinted on the atoms in the condensate. The

vortex state which is created by this process is an axially symmetric ring with a 2π phase

winding around a central depleted region (the vortex core). This technique has since been

applied to study the procession of a vortex core in a harmonic confining potential [54], as

well as in the production of dark solitons which decay into a vortex ring [67].

3.3.2 Stirring

A second method for generating vortices in a BEC is to rotate the condensate, where

angular momentum is imparted to the condensate by the nucleation of quantized vortex

lines. This approach was pioneered by Madison et al. [59] who stirred the condensate

with a laser. Initially the condensate is in a cylindrically symmetric magnetic trap, which

is elongated in the z direction. A blue-detuned laser, which forms a repulsive potential, is

shone onto the condensate and is then uniformly rotated with fixed angular frequency1.

The system is then allowed to reach thermal equilibrium, before the stirring laser is slowly

ramped down. The vortices which are nucleated can then be studied using time-of-flight

analysis [59]. This technique was later used to study a rotating condensate which was

subjected to a harmonic trap which was also rotating [141].

1A similar approach was also taken by Onofrio et al. [210] who used a red-detuned laser to form an
attractive potential which could be used to excite quadrupole standing waves or rotating modes.
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The ability to make a condensate rotate led to a host of experimental results. Chevy

et al. [211] used laser-stirring to measure the angular frequency of a BEC, showing that

there is a critical rotation frequency above which vortices are nucleated, this nucleation

process was later studied by Raman et al. [143]. In 2001, Abo-Shaeer et al. [199] used the

laser-stirring technique to observe a vortex lattice. This lattice was (as predicted [200,

201]) a well ordered triangular lattice, with an angular momentum of ~Nv/2 per particle,

containing up to Nv = 130. Performing similar experiments at finite temperature, the

dynamics of such a vortex lattice was observed to decay due to the damping of a thermal

cloud [150].

3.3.3 Spinning the Trapping Potential

In close analogy to the rotating-bucket experiments carried out in superfluid helium [202],

the third method for generating vortices in a BEC is to force the condensate to rotate

by spinning the trapping potential. This is possible by using the experimental set-up

of Arlt et al. [58], who constructed a time-orbiting potential trap which has different

trapping frequencies in each of the three axes. Calibrating these trapping frequencies2

so that ωx < ωy < ωz, a cigar shaped condensate which is elliptical in the xy-plane is

formed. The magnetic fields can then be rotated around the ẑ axis, which causes the

condensate to rotate and vortices to be nucleated. This method was first employed by

Hodby et al. [212], and has the advantage that it does not reduce the number of atoms

in the condensate, by contrast with the laser-stirring experiments [59].

A similar experiment has also been performed by rotating a normal fluid in an anisotropic

trap, and then cooling the fluid below the critical temperature for Bose-Einstein Conden-

sation [142]. Beginning with an elliptic cloud of atoms which is just above TBEC , the

rotating frequency of the trap is gradually increased until the cloud is rotating with the

chosen angular velocity, at which point the asymmetry of the trap is ramped off. The

cloud is then cooled by preferentially evaporating atoms with large angular momenta,

reducing the temperature of the remaining atoms below TBEC , while the cloud rotates at

a frequency of 94% of the radial trapping frequency, ω⊥ . Using this evaporative spin-up

technique, along with an optical spin-up [163], has allowed other experiments to achieve

rotation frequencies of Ω ≥ 0.99ω⊥ [165, 166].

3.3.4 Vortex Shedding

The final technique for generating vortices in a BEC involves dragging an “obstacle”

through the fluid. This was originally predicted by Frisch et al. [51] who studied the drag

on an obstacle in a superfluid. At sufficiently slow velocities, the flow around an obstacle

such as a blue-detuned laser beam [182] is a steady laminar flow, where no vortices are

nucleated and no drag is exerted by the fluid on the obstacle. This is the hallmark of a

2Here, ωj is the trapping frequency in the j-th axis.
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Figure 3.3: Quantum vortex shedding from a moving obstacle in a highly oblate(
ω⊥/ω‖ = 11.1/400

)
BEC. Panel (a) shows a regular shedding pattern of six clusters

of two like-sign vortices, a von Kármán vortex street. Panel (b) shows a typical irreg-
ular shedding pattern. The charge of each cluster can be inferred from the area of the
density-depleted hole. Image taken from Kwon et al. [100] with permission from APS.

superfluid flow. Above a critical velocity (the nature of which will be discussed in detail in

Part III) vortices are shed periodically. As the velocity of the obstacle relative to the fluid

increases, the shedding of vortices becomes more irregular, eventually forming a turbulent

wake.

The first experimental realisation of vortices emitted from a obstacle dragged through a

BEC was achieved by Inouye et al. [60], who dragged a blue-detuned laser beam through a

“sample” condensate, before interfering this with a second condensate in order to identify

the presence of vortices from the interference fringes (the theory of this measurement

can be found in Refs. [213, 214]). As with the rotating BEC experiments, the ability to

generate vortices by linearly translating a blue-detuned laser through the condensate led to

a raft of experimental results. Moving an obstacle relative to a trapped condensate, Neely

et al. [215] were able to determine the critical velocity for the nucleation of a vortex dipole.

Experiments were then performed to systematically study the critical velocity for vortex

nucleation as a function of obstacle height [216], as well as investigating the frequency of

vortex shedding as a function of obstacle speed [184]. As predicted [51, 99], once above

the critical velocity, further increasing the obstacle velocity leads to the shedding of an

irregular pattern of vortices. For certain obstacle widths and velocities, vortex clusters of

two like-sign vortices may be emitted by the obstacle, forming a configuration like a von

Kármán street; in a landmark experiment by Kwon et al. in 2016 [100], this configuration

was observed in a superfluid.

As well as the studies of obstacles in a flow, which have a close analogy to the study

of turbulence in classical fluids [69], Kwon et al. [179] swept a trapped condensate with a

repulsive blue-detuned laser in order to observe the decay of the vortex number. This has

connections to the correlation length scales of a system Lc, which is the relevant length

scale after a quench [217]. We will discuss the vortex decay rate further in Parts III

and IV.
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3.4 3D Vortex Lines

In 3D superfluids, such as liquid helium [218] and dilute BECs [219], it has been confirmed

that quantized vortices are 1D vortex lines (or vortex “tubes”, on account of the finite

width of the vortex core) about which the phase of the wavefunction winds by an integer

multiple of 2π. These vortex lines either terminate at a boundary, or form a closed ring.

The evolution of vortex lines is well described by the vortex filament model of Schwarz

[220]. In this model, the component of the superfluid velocity which is due phase winding

about the vortex lines is given by

v(r) =
~

2m

∫
`k

(s− r)

|s− r|3 × ds, (3.12)

where the integral is taken over all of the vortices in the system, labelled `k. Vortex lines

are not necessarily straight parallel tubes [as depicted in Fig. 3.4 (a)]. A consequence of

this is that the velocity field described in Eqn. (3.12) contains contributions not only from

other vortices, but also other parts of the same vortex line, quickly leading to complex

dynamics as more vortices are added to a system. It has been experimentally observed

that the onset of turbulence in a BEC is related to the presence of a vortex tangle [72].

A 3D vortex tube is subject to an excitement known as Kelvin waves [221], where

the vortex tube “bends” away from its straight resting position. The existence of these

excitations have been inferred in the work of Bretin et al. [74], who studied the oscillation

of a single vortex line in an oblate BEC, and Fonda et al. [222] using tracer particles in

superfluid Helium. Kelvin waves generate sound in the system through the emission of

phonons [76], a cause of energy dissipation [76, 223].

Pairs of 3D vortex tubes may also interact with each other by reconnecting [224].

Initially two well separated vortex tubes act independently [225]. As the vortex tubes get

closer, their curvature increases until they collide, forming a cusp (which excites Kelvin

waves in the system [222]) at the point of collision. This is the reconnection event, during

which the tails of the vortex are spliced together [226]. After colliding, the vortex tubes

separate, however the topology of the flow has now changed. Vortex reconnections have

been observed in atomic BECs [75, 225], and continue to be a topic of interest given their

ability to distribute energy and helicity within the system [227–229].

3.5 2D Point Vortices

By comparison to the 3D case, vortex dynamics in 2D are relatively simple. If the trapping

in one spatial direction is sufficiently tight, the vortex lines straighten until they are

parallel, and the 3D effects of bending are absent [98]. Without loss of generality we

assume that this takes place in the z axis, so that each of the vortices are parallel to ẑ.

A schematic of this is shown in in Fig. 3.4 (b). Since the vortex lines are parallel, the
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Figure 3.4: A schematic of 3D vortex (blue) and anti-vortex (red) tubes in (a) a 3D
system, (b) a highly oblate system where the trapping potential in the z direction is
strong enough to “freeze out” bends in the vortex tubes, and (c) the projection of the
vortex and anti-vortex tubes in the z = 0 plane.

governing dynamics are independent of z and so we can reduce the system to a projection

of the vortex positions in the xy-plane, Fig. 3.4 (c).

If we consider a 3 dimensional disk-shaped condensate, a vortex at position rv =

(xv, yv) with charge nv has the phase

θ (r) = nv arctan

(
y − yv
x− xv

)
, (3.13)

which is the azimuthal angle around the shifted origin [230]. Here nv ∈ Z is related to the

circulation around the vortex via Eqn. (3.5). We say that a vortex is positively charged

if its circulation is in the anti-clockwise direction (i.e., nv > 0), and a vortex is negatively

charged if its circulation is in the clockwise direction (i.e., nv < 0). Typically we will refer

to a negatively charged vortex as an anti-vortex.

As the vortices are advected by the local velocity field, the dynamics of a vortex pair

are determined by the sign of the constituent vortices. For a pair of oppositely signed

vortices, the flow field which each vortex feels is acting in the same direction, and so

the vortices will propagate together. In a uniform system, in the absence of dissipative

effects, this vortex anti-vortex pair (also called a vortex dipole pair, or vortex dipole for

short) will travel at a constant velocity which is perpendicular to the vector separating

the vortices. A vortex dipole can be considered to be a 2D analogy of a 3D vortex ring,

whose velocity depends on the radius of the ring. For a pair of same sign vortices, the

velocity field is equal and opposite at the coordinates of each vortex, and so the vortices

will co-rotate about their mid point.

The dynamics described above rely on the vortices having sufficient separation so

that the cores do not overlap. As an isolated pair in a uniform dissipationless system,

a vortex dipole pair is a stable configuration. If an external force causes the dipole
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length to shorten, eventually the vortex cores will overlap and the pair will annihilate.

The exact form of this forcing varies from system to system, but can include dissipation

[231], trapping geometries [95], or other vortices [95, 232]. Before the annihilation takes

place, the overlapping vortex cores form a crescent-shaped structure [179], which was

named vortexonium by Groszek et al. [95]. During the formation of this structure, the

dipole transfers momentum to sound waves [68]. Once the annihilation has taken place,

this structure propagates as a dark soliton [68] (similar to a Jones-Roberts solition [233])

before breaking down to release a shock wave. We emphasize that this process is analogous

to the shrinking of a vortex ring in 3D [67].

We conclude this section by commenting on the range of values that the charge of

a vortex, the integer nv might take. Thus far we have made no assumptions about the

charge nv. It has been predicted theoretically [234, 235] and confirmed experimentally

[236] that a multiply charged vortex will decay into nv singly charged vortices. Through

careful tuning of atomic scattering length, trapping geometry and system rotation, it is

possible to stabilize a multiply charged vortex from collapse [234, 237, 238]. However, for

the remainder of this thesis we assume that we are not working in such a system, and

therefore that the magnitude of the charge of the vortex is unitary, nv = ±1.

3.6 Approximate Forms of the Vortex Core

Finally, we consider the form of a vortex core itself. Although there is no exact analytic

form for the vortex density profile, in this section we discuss several approximate forms.

3.6.1 Using a Variational Approach

The time-independent wavefunction Ψ representing a system with a charge n vortex whose

is core centred at the origin may written in cylindrical polar coordinates as [230, 239, 240]

Ψ(r) = Anfn(r)einφ. (3.14)

Here the constant An is calibrated to account for the background density of the fluid, and

we have boundary conditions fn(r) → 0 as r → 0, the vortex core, while fn(r) → 1 as

r →∞. It has been shown [240], by substituting the vortex solution Eqn. (3.14) into the

GPE, Eqn. (2.8), that the function fn(r) behaves asymptotically as

fn(r) ∼ r|n| as r → 0,

fn(r) ∼ 1 − n2

r2
+ · · · as r →∞.

(3.15)

Rather than find solutions to Eqn. (3.14) analytically, we can find the kinetic energy
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per unit length of the vortex [230] which is

Ekin =
~2

2m

∫
d2r

∣∣∣∣∂Ψ

∂r
r̂ +

1

r

∂Ψ

∂ϕ
ϕ̂

∣∣∣∣2 =
A2
n~2

2m

∫
d2r

[(
dfn
dr

)2

+
n2

r2
f 2
n

]
. (3.16)

Here the first term is the energy contribution from the density variation near the vortex

core, while the second term accounts for the kinetic energy of the flow. Taking a variational

approximation, one finds that a vortex with unit charge has the approximate form [197]

fvar(r) =
r√

r2 + 2ξ2
. (3.17)

It is clear that this form obeys the boundary conditions fvar(r) → 0 as r → 0 and

fvar(r)→ 1 as r →∞.

3.6.2 The Padé Approximation

The next approximate form we present for the shape of a core of a vortex is the so called

Padé approximation, studied by Berloff [241]. Due to the zero in density at the core of the

vortex, and the requirement that the density recovers the background value of the system

far away from the vortex core, it is not possible to express the vortex core as a power

series. Berloff [241], on the other hand, used a ratio of truncated power series to construct

an improved estimate of the function, where the coefficients are determined recursively

by substituting the ansatz into the GPE, Eqn. (2.8). For a singly charged straight line

vortex in a uniform condensate, the Padé approximation to the vortex solution is

fPa(r) =

√√√√√√√√
0.6874

(
r

ξ

)2

+ 0.1144

(
r

ξ

)4

1 + 0.6666

(
r

ξ

)2

+ 0.1144

(
r

ξ

)4 . (3.18)

3.6.3 Numerically Fitting the Variational Ansatz

The final form is the ansatz found by Bradley and Anderson for homogeneous, compress-

ible, quantum fluids in two dimensions [242]. Like Fetter, and others, they write the

solution to the GPE which supports a singly charged vortex at the origin in the form of

Eqn. (3.14). As before, Bradley and Anderson impose the boundary conditions fn(r)→ 0

as r → 0 and fn(r)→ 1 as r →∞, however they also impose boundary conditions on the

derivative of fn. Firstly, the derivative dfn/dr = 0 as r → ∞, to be consistent with the

fact that the density returns to the background value far away from the vortex core. The

second condition is that the derivative must match the gradient of the vortex core at the

origin. The value

Λ = Ψ′(0) = lim
r→0
|An

dfn
dr
| (3.19)
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Figure 3.5: A comparison of the approximate analytic vortex cores to a numerically
obtained vortex core, plotted in blue. Orange, the variational approximation Eqn. (3.17);
red, the Padé approximation Eqn. (3.18); pink, the numerically fitted variational ansatz
Eqn. (3.20).

can be found numerically to be Λ = 0.8249... [242]. This leads to the approximate form

fBA(r) =
r√

r2 +

(
ξ

Λ

)2
, (3.20)

where the length scale Λ−1ξ ensures that the functional form matches the vortex at the

centre of the core.
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Chapter 4

Rapidly Rotating Bose Einstein

Condensates

Forcing a Bose Einstein Condensate to rotate leads to significantly different physics com-

pared to that of a classical fluid. In this part we present a method for evolving the

projected Gross-Pitaevskii equation (PGPE) in an infinite rotating Bose-Einstein Con-

densate; this allows us to investigate the bulk properties of the system, without needing

to worry about edge effects. A key advantage of this is that it allows us to investigate

dynamical phase transitions of a rotating superfluid.

4.1 Introduction

The dynamics of rotating 2D Bose gases have been previously studied with the PGPE [178,

243] in finite, harmonically-trapped system using a Laguerre-Gaussian basis. However, in

simulations where the condensate has an edge, vortices nucleate at the interface between

the condensate and the thermal cloud. These vortices do not penetrate the main bulk of

the condensate, rather they remain at the edge of the condensate for considerable time

[178]. Between these edge effects, and the tendency of the trapping potential to distort any

resulting vortex lattice [244, 245], it difficult to conduct a PGPE simulation of sufficient

size to isolate the bulk properties of the system [178].

There are a wide range of numerical methods available for solving the ordinary, non-

projected Gross-Pitaevskii Equation (GPE), both with and without rotation. Examples

include Crank—Nicolson schemes [147, 173, 246–249], backwards Euler finite difference

schemes [250–253], and Sobolov Gradient Methods for a rotating condensate [254–257].

A range of (pseudo-) spectral methods have also been used with Fourier series [258],

Chebyshev polynomials [259], and Hermite functions [260]. However, these studies are

conducted in a finite trapped system, which will lead to edge effects.

In order to concentrate on the bulk of the system and avoid boundary effects —

in a similar way as would be achieved using periodic boundary conditions in the non-

rotating case — previous works on rotating 2D systems have used quasi-periodic boundary

47
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conditions to simulate a representative cell of an infinite rotating system. Physically this

corresponds to a harmonically trapped gas, rotating rapidly enough that the effective

harmonic trapping vanishes. Under such rapid rotation, if the number of vortices in

the Bose gas approaches the number of atoms, the gas enters a fractional quantum Hall

regime and the classical field approach of the PGPE breaks down. If, however, the

number of vortices remains small compared to the number of atoms, the PGPE remains

valid. As described by T.-L.Ho, Ref. [261], for sufficiently small interaction strengths, and

for a rotation frequency which is approximately equal to the frequency of the harmonic

trapping potential, the system is predominantly in the lowest Landau level (LLL) state,

due to a large energy gap between the LLL state and higher energy levels. In this regime,

at low temperature, the LLL approximation can be used to determine the ground state of

a system with good accuracy [261–263]. Such an approximation has led to the studying of

vortex lattices [245, 263–270], however, it is necessarily limited to the lowest energy states

of the system. Komineas et al. [271] investigate the effects of Landau level mixing; we

should note, however, that their work concentrates on energy minimisation in a dipolar

condensate, and the instability of the lattice to collapse at large values of the chemical

potential. They do not undertake dynamic simulations, nor do they investigate finite

temperature effects.

Alternatively, Mingarelli et al. [272] and Wood et al. [273] have implemented quasi-

periodic boundary conditions for the Gross–Pitaevskii equation, by using magnetic Fourier

transforms and finite difference methods in the symmetric gauge respectively. However,

these methods do not operate in a basis of single-particle eigenstates, making it difficult

to implement the projection operation needed for the PGPE.

In Chapter 5 we present a numerical method which goes beyond previous work and

implements the PGPE in an infinite rotating 2D Bose gas. Our method operates in the

Landau gauge, using the correct single-particle basis under quasi-periodic boundary con-

ditions for a representative cell of the system (Fig. 4.1). By establishing a method to inte-

grate the PGPE for such a rotating system, we open the door to study finite-temperature,

non-equilibrium dynamics of rotating systems in the bulk, free of edge effects.

In a rotating condensate of finite size, vortices nucleating at the boundary of the

condensate and the thermal cloud [178], and the distortion of the lattice due to the

trapping potential [244, 245] provide issues when studying vortex lattices.

Non-projected numerical methods will always suffer from pathologies due to bound-

ary conditions, such as mode aliasing issues. Moreover, such methods do not impose a

consistent energy cutoff, and so physical quantities in the simulation will depend on this

choice of constraining modes. These issues can be solved by using the PGPE.

In the symmetric gauge, in a finite system, Wright et al. [178] have studied condensates

rotating below the centrifugal limit. However, the upper limit of their energy cutoff is

due to the scaling of the Gauss–Laguerre basis which quickly makes the simulations too

computationally expensive. This prohibits using a large enough domain that boundary
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effects can truly be negated. By operating in the Landau gauge with quasi-periodic

boundary conditions, we have successfully removed any issues due to boundary artifacts.

Further, by using the correct single particle basis, we are able to implement a projection

operator which imposes a consistent energy cutoff.

𝑏𝑏
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Figure 4.1: A sketch of the system: (a) A large, oblate, harmonically trapped (ωx = ωy =
ω⊥ � ωz = ω‖) condensate rotating with angular frequency Ω. (b) In the centrifugal limit
(Ω → ω⊥) a small cell in the bulk of the now-infinite condensate can be approximated
using the Landau gauge with quasi-periodic (twisted) boundary conditions. The height
of the surface represents the density of the wavefunction, while the colour represents the
phase of the superfluid.

The remainder of Part II is structured as follows: In Sec. 4.2 we introduce the equation

of motion which governs a harmonically trapped Bose gas rotating at the centrifugal limit,

as well as introducing the quasi–periodic boundary conditions which we use throughout

the following chapters. In Sec. 4.3 we detail the means by which we can choose an

arbitrary array of vortices as an initial condition for the PGPE. This requires us to find

the Landau gauge expression for the phase of Nv vortices. In Chapter 5 we introduce

the PGPE for a infinite rotating system working in the Landau gauge; we also quantify

the error which is due to the projection. Sec. 5.2 contains the main results of this part:

we consider how the PGPE evolution performs for varying simulation parameters, as well

as looking at how our method can be used to find the ground state of a given system.

We then investigate the stability of this ground state. Chapter 6 considers the effects

of melting the rotating lattice ground state. We describe how the wavefunction may be

unwound in order to measure the first order correlation function; this exhibits a transition

from algebraic to exponential decay as the amount of noise which is added to the initial

condition is increased.
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4.2 Rotating Projected Gross-Pitaevskii Equation

4.2.1 The Single–Particle Hamiltonian

In the rotating frame, the Hamiltonian for a particle of mass m rotating with angular

momentum Ω is [274]

HΩ =
|p|2
2m

+
1

2
mω2

⊥
(
x2 + y2

)
+

1

2
mω2

‖z
2 −Ω · r × p, (4.1)

where ω‖ and ω⊥ are the trapping frequencies in the z and the radial directions, respec-

tively. Throughout Part II, we will not worry about non-uniform rotation, disturbance to

the density of the fluid, or any other effects which would be a direct result of the mech-

anism used to spin the gas. On choosing the z axis to be the axis of rotation, Ω = Ωẑ,

the Hamiltonian may be written as [126, 275, 276]

HΩ =
(p−mΩ× r)2

2m
+

1

2
m
(
ω2
⊥ − Ω2

) (
x2 + y2

)
+

1

2
mω2

‖z
2. (4.2)

In the middle term of Eqn. (4.2) we see that the frequency of rotation Ω reduces the radial

trapping frequency. We set Ω = ω⊥, which is defined by Cooper [126] as the centrifugal

limit1. This yields the Hamiltonian

HΩ =
(p−A)2

2m
+

1

2
mω2

‖z
2, (4.3)

where HΩΨ is invariant under the transformation

A→ A+∇λ, Ψ→ exp

(
i

~
λ

)
Ψ, (4.4)

for a given λ, a function of x and y. Hence we have the gauge freedom to choose any

A such that ∇ ×A = 2mΩẑ. Eqn. (4.2) is implicitly in the symmetric gauge, which is

logical outside the centrifugal limit, as the single particle basis functions are the associ-

ated Laguerre polynomials [277]. The trapping of a BEC gives rise to several boundary

phenomena, including the short lived nucleation and annihilation of vortices which do not

penetrate the bulk of the fluid [178]. At the centrifugal limit, it is advantageous to use

the Landau gauge,

A =

 0

2mΩx

0

 , (4.5)

as the single particle basis functions with quasi-periodic boundary conditions can be found.

This will enable us to study the bulk of the Bose gas using the PGPE, without worrying

about edge effects.

1Experimentally it is possible to achieve Ω = 0.99ω⊥, see for example [165, 166].



CHAPTER 4. RAPIDLY ROTATING BECS 51

4.2.2 The GPE in Dimensionless Variables

The most common description of an ultracold Bose gas is that of a wavefunction Ψ which

obeys the mean–field Gross–Pitaevskii equation (GPE). In a rotating system such as the

one described in Sec. 4.2.1, this equation takes the form

i~
∂Ψ

∂t
= HΩΨ + g|Ψ|2Ψ− µΨ. (4.6)

We are interested in the behaviour of vortices in the rotating plane and so we adopt a

highly oblate condensate with trapping frequencies ω⊥ � ω‖. With this tight confinement

in the z direction, and the condition ~ω‖ � µ, the excitation of modes in the z direction

is prevented. The GPE for our rotating quasi–2D system is therefore

i~
∂Ψ

∂t
=

(
− ~2

2m
∇2 +

i~
m
A·∇+ 2mΩ2x2 + g2D|Ψ|2 − µ2D

)
Ψ. (4.7)

This equation is fundamentally different to those of Refs. [147, 173] as we are in the

Landau gauge, given by Eqn. (4.5). One can convert from the Landau gauge to the

symmetric gauge [272, 273] by substituting

λ = −mΩxy (4.8)

into Eqn. (4.4). We adopt natural units for the system, based on the healing length ξ =

~/√mµ2D. This leads to dimensionless distances x′ = x/ξ and y′ = y/ξ, a dimensionless

time t′ = µ2Dt/~, and a dimensionless wavefunction Ψ′ = Ψ
√
g2D/µ2D. Using these units

we write Eqn. (4.7) in dimensionless form (dropping the prime notation)

i
∂Ψ

∂t
= HΩΨ + |Ψ|2Ψ−Ψ, (4.9)

where the one-body Hamiltonian can be written as

HΩ = −1

2
∇2 + iΓ2x

∂

∂y
+

1

2
Γ4x2, (4.10)

with Γ = ξ/` the ratio of the healing length ξ to the “magnetic length” ` by [126, 278]

defined

`2 =
~

2mΩ
. (4.11)

In the case of the rotating Bose gas, ` is a characteristic distance between vortices.

4.2.3 Quasi-Periodic Boundary Conditions

We now wish to consider a representative cell of an infinite rotating system, by introducing

quasi-periodic boundary conditions, and to establish the corresponding single-particle

basis functions. This cell will have physical dimensions 0 ≤ x ≤ aξ, 0 ≤ y < bξ, with



52 CHAPTER 4. RAPIDLY ROTATING BECS

aspect ratio κ = a/b.

As discussed in Chapter 3, a conventional fluid rotating with angular momentum Ω

has velocity v = Ω × r, giving a uniform vorticity field [69], ∇ × v = 2Ω. On making

a Madelung transform, the superfluid velocity is v = m−1~∇θ, implying that vortices

appear as point-like singularities in the phase, about which θ winds by 2π. From the

superfluid velocity, in the cell R of area ab, one may use Stokes’ theorem to compute∫
R
∇× v · d2r =

∮
∂R

v · dr =
2π~
m

Nv (4.12)

where Nv is the number of vortices in the cell, and ∂R is the closed curve bounding the

cell. Similarly, one can use the result for solid-body rotation to compute∫
R
∇× v · d2r =

∫ a

0

dx

∫ b

0

dy 2Ω · ẑ dx dy = 2Ωab. (4.13)

Comparing Eqn. (4.12) and Eqn. (4.13) implies the Feynmann relation for areal vortex

density [198],
2π~
m

Nv = 2Ωab, (4.14)

which, using the definition of “magnetic length” from Eqn. (4.11), leads us to a quanti-

sation condition

abΓ2 = 2πNv, (4.15)

which relates the area of the cell to the net number of vortices Nv [197]. With this

quantisation condition, we set the net number of vortices Nv and the size of the box a, b,

which determines the rotation Ω.

For the representative cell, we define the boundary conditions to be (working in di-

mensionless variables)

Arg [Ψ (x+ a, y)] = Arg [Ψ (x, y)] +
2πy

b
, (4.16)

Arg [Ψ (x, y + b)] = Arg [Ψ (x, y)] . (4.17)

Unlike standard periodic boundary conditions, these boundary conditions provide the

wavefunction with a winding in the phase. Such boundary conditions were discovered to

be necessary in the work of Byers and Yang [279], who considered the physical princi-

ples behind the quantization of magnetic flux in a superconducting ring. Working with

vortices in a rotating superfluid in the symmetric gauge, Wood et al., [273], has shown

that analogous quasi-periodic boundary conditions are necessary to ensure that the rel-

ative superfluid velocity is periodic. The boundary conditions Eqns. (4.16) and (4.17)

are therefore required in our system as a direct result of the quantisation condition in

Eqn. (4.15), and the fact that we work in the Landau gauge, Eqn. (4.5). Throughout

this part, we will refer to these boundary conditions as quasi-periodic, or ‘twisted’ [272]

boundary conditions.



CHAPTER 4. RAPIDLY ROTATING BECS 53

We now consider the appropriate basis functions needed to implement a projected

Gross-Pitaevskii equation. Previous work [166, 245, 263, 265–268, 270, 278] has investi-

gated rapidly rotating 2D systems which depend only on the Lowest Landau Level (LLL).

This is accurate for a system of dense vortices, however where the typical vortex spacing

is much larger than the healing length, interactions in the Bose gas lead to contributions

from higher Landau levels [126]. Ref. [278] gives the LLL eigenfunction of the Hamil-

tonian in Eqn. (4.10), which can be extended to describe higher Landau levels. These

eigenfunctions take the form

φn,k =
√
aΓ

∞∑
p=−∞

χn

[
Γa

(
k

Nv

+ p

)
− Γx

]
exp

[
iΓ2a

(
k

Nv

+ p

)
y

]
, (4.18)

where

χn(x) =
1√

2nn!
√
π
Hn(x) exp

(
−1

2
x2

)
. (4.19)

Here, Hn(·) is the nth physicists’ Hermite polynomial [280], and the Landau levels are

indexed by n = 0, 1, . . . . Without loss of generality, we choose to normalise the basis

functions to ab (see Appendix B.1.1 for details). The eigenenergies corresponding to the

eigenfunctions of Eqn. (4.18) are

En,k = Γ2

(
n+

1

2

)
. (4.20)

Expanding the wavefunction Ψ in terms of all eigenstates below an energy cutoff

Ecut = Γ2(M + 1/2) and solving Eqn. (4.9) for the expansion coefficients constitutes the

PGPE for this system. The choice of cutoffM will be discussed further in Secs. 5.1 and 5.2.

4.3 Vortex Ansatz For Initial Condition

In this section we describe the process by which we prepare an initial configuration of

Nv vortices placed within the cell. This allows us to investigate a number of scenarios

involving free vortices, clustered vortices and dipole pairs.

It is known that it is possible to express the phase of a vortex using the zeros of a

Weirstrass function [201]. Further, in the Landau gauge it is appropriate to use Jacobi

Theta functions to describe the phase. The 3rd Jacobi Theta Function is defined as [280]

ϑ3 (z, τ) = 1 + 2
∞∑
n=1

qn
2

cos (2nz) , (4.21)

where z is a complex coordinate, and τ ∈ C is the lattice parameter with nome q =

exp (iπτ) . We restrict ourselves to the case of a rectangular domain, requiring < (τ) = 0
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Figure 4.2: Example configuration of vortices using the method described in Sec. 4.3.
The colour bar indicates the phase of the superfluid. (a) A single, positively charged,
vortex is placed at the centre of the cell. (b) Two positively charged vortices are placed
at (a/2, 3b/4) and (a/2, b/4). (c) Three positively charged and one negatively charged
vortices create a dipole pair in the cell.

and = (τ) > 0, so that ϑ3 has quasi-periodicity relation

Arg [ϑ3 (z + fπ + gτπ; τ)] = Arg [ϑ3 (z; τ)]− 2g<(z), (4.22)

for integers f and g (see Appendix B.2 for further information). In order to describe

a domain which is arbitrary sized, we introduce L then by re-scaling z → πz/L, and

defining the lattice parameter τ to be purely imaginary, the Jacobi theta function ϑ3 is

quasi periodic on 0 ≤ < (z) < L and 0 ≤ = (z) < L=(τ). In this case, the quasi-periodicity

relation of Eqn. (4.22) becomes

Arg
[
ϑ3

(π
L

(z + Lτ) ; τ
)]

= Arg
[
ϑ3

(πz
L

; τ
)]
− 2π

L
<(z). (4.23)

By comparison with the quasi-boundary conditions of Eqn. (4.16), it follows that L = b,

τ = iκ and z = ix − y. Consequently, it is possible to determine that the fundamental

solution for the phase θ of a vortex centred in the box at (a/2, b/2), is

θ(z) = cArg
[
ϑ3

(π
b
z ; iκ

)]
, (4.24)

where c is the integer charge of the vortex. This fundamental solution is shown in the

phase plot of Fig. 4.2 (i). By the use of a suitable gauge transformation, it can be shown

that this is equivalent to expressions obtained for quasi-periodic boundary conditions in

the symmetric gauge in Ref. [273].

Suppose that we wish to obtain the phase of the kth vortex, of charge ck, which is

shifted from the centre of the cell, to the position (xk, yk). Then we define the effective

vortex coordinate

zk = i
(
xk −

a

2

)
−
(
yk −

b

2

)
, (4.25)
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so that the phase of the kth vortex is given by

θk (z ; zk) = ckArg
[
ϑ3

(π
b

[z − zk]; iκ
)]
. (4.26)

The density profile of a vortex was found numerically in Ref. [242]. Non-dimensionalising

this function, and setting the background density to be one, we have

ρk (z ; zk) =

[ ∣∣z − zk + 1
2
(ia− b)

∣∣2∣∣z − zk + 1
2
(ia− b)

∣∣2 + Λ−2

]1/2

, (4.27)

where Λ ≈ 0.8249 is a universal constant.

Combining phase and density profiles of the individual vortices, our ansatz wavefunc-

tion for Nv vortices is

Ψ (z | {zk}) =
Nv−1∏
k=0

ρk (z; zk) exp [iθk (z; zk)] , (4.28)

where {zk} = {z0, . . . , zNv−1}. In order to determine the symmetry conditions of this

ansatz, let us consider the transformation x→ x+ a. In this case, we have

Arg [Ψ (z + ia | {zk})] =
Nv−1∑
k=0

ckArg
[
ϑ3

(π
b
{z − zk}+ i

πa

b
; iκ
)]
, (4.29)

which, using the quasi-periodicity relation of Eqn. (4.22), is

Arg [Ψ (z + ia | {zk})] = Arg [Ψ (z | {zk})] +
2πNy

b
+
π

b

Nv−1∑
k=0

(
yk −

b

2

)
, (4.30)

where Nv is the net number of vortices (the sum of ck). The first two terms on the

right hand side of Eqn. (4.30) are in direct agreement with the quasi-periodic boundary

conditions of Eqns. (4.16) and (4.17). However, to match the boundary conditions the

third term must vanish. This means that the vortex positions yk must satisfy

ȳv =
1

Nv

Nv−1∑
k=0

ckyk =
b

2
, (4.31)

placing the center of vorticity at b/2 in the y-direction. This condition is related to the

fact that the ground state vortex lattice breaks the translational symmetry of the system.

Adding a constant to our boundary conditions [Eqn. (4.17)] would trivially shift the center

of vorticity within the cell. An equivalent connection between boundary conditions and

the center of vorticity is found for quasi-periodic boundary conditions in the symmetric

gauge [273]. Fig. 4.2 shows a small selection of initial vortex configurations which can be

created using the ansatz wavefunction of Eqn. (4.28).



Chapter 5

Numerically Implementing the

Projected Gross-Pitaevskii Equation

in an Infinite Rotating BEC

5.1 Numerical Method For Basis Transformation

5.1.1 PGPE Implementation

To implement the PGPE for the quasi-periodic system introduced in Sec. 4.2, we follow the

same approach as used for the uniform system in Ref. [281], but using the quasi-periodic

one-body eigenstates. As described by Ref. [134], defining an orthonormal projector

with respect to the one-body Hamiltonian is convenient due to the fact the many-body

spectrum is well approximated by the single-body spectrum when in the high energy

limit. However, in our case there is no known exact numerical quadrature rule for the

basis functions with which to implement the projection to numerical precision. Instead

we introduce an approximate projection operation that can be made sufficiently accurate

for our purposes.

Our basis functions are given by Eqn. (4.18), and we define the wavefunction Ψ to be

Ψ(x, y, t) =
M−1∑
n=0

Nv−1∑
k=0

cn,k(t)φn,k(x, y), (5.1)

where our energy cutoff is prescribed by the value of M . The summation over p contained

within the basis functions, Eqn. (4.18), is truncated so that −pmax ≤ p ≤ pmax. It is

critical that we choose a large enough pmax that the quasi–periodic basis functions are

approximately orthogonal, and we discuss the validity of this truncation in Sec. 5.1.2. We

use the orthonormality conditions of the basis functions (see Appendix B.1.1 for details),
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to derive an evolution equation for the coefficients cn,k

i
dcn,k
dt

= (En,k − 1) cn,k +
M−1∑

n′,m,,m′=0

Nv−1∑
k′,j,j′=0

cn′,k′cm,jcm′,j′In,n′,m,m′;k,k′,j,j′ (5.2)

where

In,n′,m,m′;k,k′,j,j′ =

∫ a

0

∫ b

0

φ∗n,kφ
∗
n′,k′φm,jφm′,j′ dydx. (5.3)

There is no known quadrature rule for the integral in Eqn. (5.3), and so we instead will

use an approximate pseudospectral method [282]. We write Eqn. (5.1) as

Ψ = Tc, (5.4)

where Ψ is a real space representation of the wavefunction with Q2 elements indexed by

ri = (x, y)i, and c is a representation of the wave function in the ‘coefficient space’ of the

basis functions, with MNv elements indexed by σj = (n, k)j. The matrix T is written in

terms of the basis functions as

Tij = φσj
(ri) . (5.5)

We must also define the matrix U , which is the inverse transformation of Eqn. (5.4), i.e.

U = T †/Q2, and the diagonal ‘energy matrix’ E, which contains the eigenvalues of the

basis functions, Ejj = Eσj
. The resultant equation for the evolution of the coefficients is

i
dc

dt
= (E − IMNv) c+ U |Tc|2 (Tc) , (5.6)

the evolution of which will be discussed in Sec. 5.2.

We now consider two sources of error which are unavoidable when performing numer-

ical simulations: the projection error, which arises on choosing the number of grid-points

Q for a given M , and the error associated with truncating the summation over p, which

comes from our choice in pmax.

5.1.2 Projection Error

As discussed in Sec. 4.2, the energy cutoff in our simulations is defined as M , which is the

number of Landau levels which are included in our basis functions. We are also working

with a system which does not have a quadrature rule, hence there is no clear cut way of

selecting a value of Q for a given M . The cubic term in the GPE may lead to aliasing

in any grid representation of the wavefunction [133]. In our system, this corresponds to

the non-linear term of the GPE producing polynomials of order 3M , which are outside

the c–field region and hence not energy conserving. It is therefore necessary to check the

validity of any given values of Q and M , which we do with the following algorithm.

Assume that our system has Nv states1, Q grid points in each of the x and y directions,

1Mathematically, the number of states, Nv represents the net number of vortices within the funda-
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and M Landau levels; for these parameters there is a transformation matrix T , and its

inverse U , the construction of which is described in Eqn. (5.4). We generate the matrix

T̃ which also has Nv states and Q grid-points, but has 3M Landau levels (on account of

the nonlinear term in Eqn. (4.9) being cubic). For the remainder of this section, we use

a tilde to denote a coefficient space which has 3M Landau levels.

We create a test vector c̃ which is

c̃ =
1√

2MNv

(

M×Nv︷ ︸︸ ︷
0, . . . , 0,

2M×Nv︷ ︸︸ ︷
1, . . . , . . . , 1), (5.7)

which is a vector where the first M × Nv elements (which are the coefficients for the

basis functions with the lowest M Landau levels) are zero, while the other elements are

identical, and normalised so that |c̃|2 = 1. From here, we compute

c = U
[
T̃ c̃
]
. (5.8)

This transforms the test vector c̃ from the enlarged basis in coefficient space, into the

Q×Q basis in real space, and then back to the smaller, M ×Nv, coefficient space.

Using c, the M × Nv array of coefficients, we can now quantify the error in the

projection. If the projection was perfect, the array c would be precisely zero. That is to

say: we would have recovered the coefficients of the lowest M Landau levels from the test

array c̃ without alias.

If, however, there are non-zero elements in c, then there has been some “leakage”

of higher order modes into the M lowest modes which we have defined as our c-field.

Numerically we define this error to be

δ = max{c∗n,kcn,k}, (5.9)

where this “leakage” corresponds directly to momentum aliasing.

The results of this analysis are presented in Fig. 5.1. We see that, for any given M ,

there is a threshold value of Q for which the projection error δ becomes negligible. Below

these threshold values, the error decreases at a rate which depends on M : for small M ,

the error decreases very quickly, while larger M requires more grid-points. Above the

threshold value, the projection error converges to a characteristic error for the given set

of simulation parameters. This means that increasing the number of points serves only

to slow the simulation, and offers no numerical advantage.

We note that the analysis above was conducted with a cell where a = b = 64, the

truncation pmax = 10, and Nv = 4 vortices. A similar analysis can be conducted for a

different size cell, and for a different number of states in the system, however we note

that the results are qualitatively the same: for higher M one must increase the number

of grid-points in order to reduce the projection error.

mental cell.
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Figure 5.1: The projection error, δ as a function of Q for varying values of M . We have
set a = b = 26 to be the cell size, fixed pmax = 10, and set Nv = 4. The dotted lines are
added as a guide to the eye.

5.1.3 Truncation Error

Clearly, when calculating the matrix T from the basis functions defined in Eqn. (4.18) it

is necessary to truncate the summation over p. We must, however, ensure that we have

chosen a large enough value of pmax that significant contributions to the wavefunction from

neighbouring cells are not erroneously ignored. It is also critical to choose a large enough

value of pmax, as the infinite sum over p is responsible for transforming an integration over a

finite domain, into an integration over an infinite domain, which is how the orthonormality

of the Hermite polynomials is defined (see Appendix B.1.1 for further details).

There are several well known bounds for the zeros of Hermite polynomials, however the

eigenfunctions in Eqn. (4.18) are a sum over a product of a Hermite function χn(x), and

the complex exponential in y. Although Hermite functions decay exponentially quickly

after their most extreme zeros, there is still an imaginary part of these eigenfunctions

which must be taken into account. The presence of p in both the x and y components of

the basis functions mean that truncating the summation over p is not as simple as using

a bound for the Hermite polynomials, and we must be cautious that the value of pmax is

chosen correctly.

We perform the same analysis as in Sec. 5.1.2 in order to quantify the error δ, however

in each case we fix Q and M and instead vary pmax. The results can be found in Fig. 5.2.

For each Q and M , we note there is a threshold value of pmax above which the truncation

error becomes negligible (this is indicated by the sharp cusp in the graph). Initially there
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is an increase in the error (for pmax = 1), however this is because the basis functions do

not converge to the correct value for this choice in truncation. Above the threshold value,

there is a convergence in the error for a given M and Q.

Informed by the analysis of Sec. 5.1.2, we note that for values of M which were greater

than 210, it was necessary to use Q = 28, grid points in each direction to get a meaningful

result.

0 2 4 6 8
-16

-14

-12

-10

-8

-6

-4

-2

0

Figure 5.2: The truncation error δ, for varying pmax with fixed M and Q. For M ∈
{26, 28, 210} we used Q = 27 grid-points, while for M > 210, it is necessary to use Q = 28

grid-points to achieve a meaningful result. Note that a = b = 26 and Nv = 4 in this
analysis. The dotted lines are added as a guide to the eye.

5.2 Convergence and Testing of the Method

5.2.1 Overview of Numerical Procedure

Here we briefly outline how the pseudospectral method described above can be imple-

mented numerically. In order to perform the transformations between real and coefficient

space required by Eqn. (5.4), we begin by creating the matrix described in Eqn. (5.5).

Note that this fixes the dimensions of the fundamental cell, a, b (and therefore κ), the

number of Landau levels, M , the number of grid-points, Q, and the net number of vortices,

Nv. Once this is complete, we evolve Eqn. (5.6) from an initial condition. Numerically, we

compute the time evolution using an adaptive 8th order Dormand Prince (DP8) method
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[283] with adaptive time stepping subject to an error tolerance ε. This method, based

on a RK8(7) procedure in which the principal truncation error of the 8th order estimate

is minimised, is advantageous in that it is highly accurate and is shown to be efficient

even for non-linear equations. Since the majority of the memory requirements lie in the

storing of the T and U matrices, the extra memory required to use such a high order

time-stepping scheme is inconsequential. The high order of the method reduces the total

number of time derivative evaluations required while maintaining sufficiently stringent

tolerance to preserve the conserved quantities to good accuracy over long time. The most

computationally demanding step in the procedure is performing the basis transforma-

tions needed to evaluate the time derivative; this amounts to performing multiplication

by the matrices T and U , which have a large size of MNvQ
2 elements (about 227 for

typical parameters). Owing to the large size and high condition number of the T and

U matrices, numerical rounding errors in these matrix-vector multiplications can become

non-negligible with standard double-precision arithmetic. We find that performing a sta-

bilized matrix-vector multiplication, using the techniques to extend precision described in

Ref. [284] and parallelized using OpenMP, effectively eliminates these problems without

significantly increasing computation times2.

There are two kinds of initial conditions that we may use. In the first instance, we

can control the occupation of the modes in coefficient space, in a manner similar to the

simulations of Ref. [285]. More conveniently, we can produce an ansatz wavefunction

whereby we prescribe the position and charge of Nv vortices, using the method described

in Sec. 4.3. The only difference is that we must transform this ansatz into coefficient

space before evolving.

5.2.2 Conserved Quantities

There are three quantities which should be conserved by any numerical treatment of

Eqn. (4.9). They are the real-space norm NR of the wavefunction,

NR(t) =

∫ a

0

∫ b

0

Ψ∗(x, y, t)Ψ(x, y, t) dydx, (5.10)

the norm of the coefficients, NC , defined as

NC(t) =
MNv−1∑
j=0

c∗σj
(t) cσj

(t), (5.11)

and the energy of the system,

E(t) =
1

NC(0)

MNv−1∑
j=0

Eσj
c∗σj

(t) cσj
(t) +

1

NR(0)

∫ a

0

∫ b

0

1

2
|Ψ(x, y, t)|4 dydx. (5.12)

2Note that a generic Fortran code to implement this stabilized matrix-vector multiplication, as well
as an outline DP8 code, was provided by Thomas Billam.
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In both Eqns. (5.10) and (5.12) we have discretized real space, and so the integrals will be

replaced with summations, with dx→ a/Q (likewise dy → b/Q). Due to numerical error,

these quantities will not be conserved by our evolution scheme. Tracking their changes,

however, provide a key insight as to how accurate our scheme is.

5.2.3 Evolution of Vortex Ansatz States

In Fig. 5.3, column (i), we calculate the evolution error for varying values of M, while the

tolerance in the numerical timestepping is fixed, ε = 10−10. We do this whilst varying the

number of grid points: Q = 26, blue crosses; Q = 27, red circles; Q = 28, yellow squares;

Q = 29, purple asterisks. We note that the curves have a characteristic bow shape; initially

increasing the number of Landau levels decreases the error in the evolution. For each value

of Q, however, there comes a point where projection error dominates the increase in M ,

and the evolution error increases. This is particularly noticeable in the regime of low Q

and high M in the plot of ∆NR, Fig. 5.1 (a)(i).
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Figure 5.3: Evolution error for the quantities NR, row (a); NC , row (b); and E , row (c).
Column (i): varying M for Q = 26, blue crosses; Q = 27, red circles; Q = 28, yellow
squares; Q = 29, purple asterisks. Column (ii): varying Q for M = 26, blue crosses;
M = 27, red circles; M = 28, yellow squares. For columns (i) and (ii), ε = 10−10. Column
(iii): varying ε for M = 26 and Q = 28. In all cases, a = b = 26.

In column (a)(ii)–(c)(ii), we calculate the evolution error for varying values of Q for
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a fixed tolerance of ε = 10−10, with M = 26, blue crosses; M = 27, red circles; M =

28, yellow squares. We observe that increasing the number of grid points Q leads to a

monotonic decrease in the evolution error. Initially projection error dominates, however

this is in a regime where we have one or fewer grid points per healing length. As Q

increases beyond approximately 4 grid points per healing length, we note that the error

converges for each value of M ; it it also apparent that once the error has converged, a

higher value of M leads to a better conservation in the quantities of interest.

In column (a)(iii)–(c)(iii), we calculate the evolution error for varying values of ε,

where M = 26 and Q = 28. We see that there is a very good agreement between the

tolerance size, and the expected error of the DP8 method.

It should be noted that although this demonstrates the evolution error of one initial

state, it is qualitatively representative of all initial states. That is to say, the results of

the evolution error testing presented here are a realisation of a single (randomly chosen)

initial condition, but we note that this is indicative of all initial conditions.

5.2.4 Stability of the Ground State

As well as performing the dynamical evolutions described in the previous sections, we

want to be able to find the ground state of Nv vortices. In order to do this, we add a

dimensionless damping parameter γ to the governing equation [147, 274]. This parameter

describes the diffusion of thermal atoms from the system, a key physical process in relaxing

the system to a ground state [88]. This means that Eqn. (4.9) becomes

i
∂Ψ

∂t
= (1− iγ)

[
HΩΨ + |Ψ|2Ψ−Ψ

]
, (5.13)

and hence we will numerically simulate

dc

dt
= − (γ + i)

[
(E − IMNv) c+ U |Tc|2(Tc)

]
. (5.14)

For a domain with aspect ratio κ =
√

3, the ground state has been shown to be a hexagonal

lattice [200, 201, 276]. We will show in the rest of this section that this damped PGPE

will cause the system to relax into a vortex lattice ground state.

The procedure is as follows: We initially seed all of the coefficients so that

cn,k(0) =
(1 + i)√
2MNv

, (5.15)

and evolve this state using the damped GPE in Eqn. (5.14), with the parameter γ = 1.

This leads to the ground state c(g). In Fig. 5.4 we plot the ground state for Nv = 6,

Nv = 8 and Nv = 18.

A lattice is characterised by a pair of primitive lattice vectors L1 and L2, from which

we can infer the shape of a lattice (i.e. square, hexagonal, etc.). In Fig. 5.4 we add
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Figure 5.4: The hexagonal lattice ground states. (a) a system with Nv = 6 vortices, (b)
a system with Nv = 8 vortices, and (c) a system with Nv = 18 vortices. The primitive
vectors of a hexagonal lattice, L1 and L2, are added as a guide to the eye. In each case,
a = 32

√
3 and b = 32.
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the primitive vectors of a hexagonal lattice, such that |L1| = |L2| and L̂1·L̂2 = 1/2,

confirming that the ground state is a hexagonal lattice. Further, we observe that in the

long term the energy of the system is monotonically decreasing when evolving Eqn. (5.13)

with γ = 1, and that the energy converges. For the parameters in Fig. 5.4, |E(t+δt)−E(t)|
has converged to within at least 2× 10−7.



Chapter 6

Phase Transitions in a Rotating 2D

Bose Einstein Condensate

The physics of a Bose Einstein Condensate changes as the dimensionality of the system

is reduced, since fluctuations play a greater role in such reduced-dimensionality settings.

A consequence of this is that a condensate can not exist in 2 dimensions, except at

zero temperature [286, 287]. If we add rotation to a 2D system, then we have a trade

off between the effects of reduced dimensionality and the non-trivial effects of forcing a

superfluid to rotate.

In this chapter we perturb the ground state of the rotating system found in Chapter 5,

in order to investigate how the lattice responds to melting. We then discuss the means

by which one may extend this work to investigate phase transitions in a rotating 2D Bose

gas. This remains an ongoing topic of investigation.

6.1 The Berezinskii–Kosterlitz–Thouless Transition

In a 3D system, it has been predicted and observed that a BEC phase exists, irrespective

the trapping that the condensate is subjected to. In fewer dimensions however, the picture

becomes counter-intuitively more complicated. It has been shown by Mermin and Wagner

[286] that a finite temperature phase transition to a Long Range Order state in not possible

in either 1D or 2D due to thermal fluctuations. Hohenberg [287] later showed that this

result extends to ultra-cold gases. These results are collectively known as the Mermin–

Wagner–Hohenberg Theorem, and show that a BEC transition does not occur in 2D Bose

gases.

For a homogeneous 2D system the normalised first order spatial correlation function

is defined as [111]

G(1) (x,x + r) =
〈Ψ∗ (x) Ψ (x + r)〉√〈
|Ψ (x)|2

〉 〈
|Ψ (x + r)|2

〉 . (6.1)

Large systems have many vortices, and at low temperature it becomes energetically

66
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more favourable for vortices to exist in tightly bound vortex-antivortex pairs. At these

low temperatures, thermal fluctuations are dominated by spin wave excitations. This

causes the correlation function to decay algebraically with distance,

G(1)(r) ∝ |r|−α, (6.2)

a phenomenon dubbed “topological order”, or quasi-long-range-order [288].

At high temperature, vortex pairs unbind, resulting in the destruction of topological

order, and the correlation function decays exponentially with distance,

G(1)(r) ∝ exp

(
−|r|
`c

)
, (6.3)

for some characteristic length `c . A schematic of this vortex-unbinding can be found in

Fig. 6.1.

This phase transition, known as the Berezinskii-Kosterlitz-Thouless (BKT) transition

[289, 290], describes a finite critical temperature, TBKT , at which the system sharply

changes from quasi-long-range-order to an absence of long range order. The difference

between these regimes indicates that there must be a break in the analicity between high

and low temperatures [289] (i.e., a cross-over from an algebraic to an exponential decay

of the correlation function). In fact, the 1st order correlation function vanishes at any

finite temperature [290]. This is in stark contrast to the smooth transition seen in three

dimensions.

Since the BKT transition was experimentally verified in thin films of Helium [291], it

has remained an active area of experimental [115–118, 120–124, 292, 293] and theoretical

[56, 294–311] research. Importantly, these results on the BKT transition do not necessarily

apply to the case of a trapped, rotating system. An interesting and challenging open

problem in 2D gases remains: how is the BKT transition affected in a system which is

forced to rotate? In the remainder of this chapter we present some preliminary results on

this question.

6.2 Lattice Melting

Using the methodology described in Chapter 5, we evolve an initial configuration of 6

vortices using the damped GPE, which leads to a lattice ground state c(g), as reported in

Sec. 5.2.4. We then add noise to the ground state, by taking

cn,k = ηc
(g)
n,k + (1− η) exp [i$] (6.4)

for n = 1, . . . , (M − 1), where the parameter η controls the amount of noise which is

injected into the lattice ground state, and $ is sampled from a uniform distribution

U(0, 2π). It should be noted that noise should be added in coefficient space, and not in
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Figure 6.1: A schematic showing the binding and un-binding of dipole pairs in a homo-
geneous gas across the BKT transition. Left inset: the first order correlation function
G(1)(r) decays algebraically for T < TBKT ; right inset: the first order correlation function
decays exponentially for T > TBKT .

real space, to ensure that the wavefunction is representable in terms of the basis functions.

Adding noise to the coefficients of the ground state will increase the presence of higher

Landau levels in the system, and hence effect the thermal properties of the system. Here

we take 5 values of η, so that the initial configuration is 98.2%, 98.6%, 99%, 99.4%

and 99.8% of the lattice ground state. For each of these configurations, we simulate 10

different realisations of noise added to the coefficients of the ground state, evolved to

dimensionless time tf = 104. In addition to the individual trajectories, we compute the

time and ensemble averaged density,

ρ̄ =
1

tf − ti

∫ tf

ti

〈∣∣Ψ (x, y, t)
∣∣2〉 dt, (6.5)

and the time and ensemble averaged phase,

θ̄ =
1

tf − ti

∫ tf

ti

〈
Arg [Ψ (x, y, t)− Arg [Ψ (0, 0, t)]]

〉
dt. (6.6)

We compute these averages over an ensemble of 10 trajectories, averaging in time

from ti = 5 × 103 to tf = 104, numerically integrated over 500 equally-spaced outputs.

Although we do not compute the temperatures that these energies correspond to in the

microcanonical ensemble, in principle these can be determined as described by Ref. [132].

Fig. 6.2 shows the instantaneous and averaged density and phase profiles for the dif-

ferent values of η. For reference, the energy of the lattice ground state is Eg = −0.7135.

Due to the degeneracy of eigenenergies, the parameter η is not a versatile measure of the

injected energy for systems with different numbers of vortices. Further, the initial energy

of each realisation is different, and so we compare different values of noise in the system
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Figure 6.2: Row (a)(i)–(a)(v): instantaneous density profile at t = 5000. Row (b)(i)–
(b)(v): instantaneous phase profile at t = 5000. Row (c)(i)–(c)(v): time and ensemble
averaged density profile, ρ̄. Row (d)(i)–(d)(v): time and ensemble averaged phase profile,
θ̄. The initial configurations are given by: Column (a)(i)–(d)(i): η = 0.982, column
(a)(ii)–(d)(ii): η = 0.986, column (a)(iii)–(d)(iii): η = 0.990, column (a)(iv)–(d)(iv):
η = 0.994, and column (a)(v)–(d)(v): η = 0.998. See Supplemental Material [312] which
contains movies of the time evolution.
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by computing the added energy,

EA = 〈E0〉 − Eg, (6.7)

where 〈E0〉 is the energy of the system after one time step, so that the wavefunction

and vector of coefficients is correctly normalised. In Fig. 6.2, column (i) corresponds to

EA = 0.8107 |Eg|, column (ii) corresponds to EA = 0.6688 |Eg|, column (iii) corresponds to

EA = 0.5361 |Eg|, column (iv) corresponds to EA = 0.4267 |Eg|, and column (v) corresponds

to EA = 0.3638 |Eg|.
It is clear to see that as the energy of the system increases, stronger fluctuations destroy

the regular vortex lattice. In Fig. 6.2 (a)(i)–(b)(i) we see that fluctuations have led to

the creation of short–lived dipole pairs, which in turn means that there is no recognisable

structure to the time and ensemble avearged profiles, Fig. 6.2 (c)(i)–(d)(i). Similarly,

fluctuations in Fig. 6.2 (a)(ii)–(b)(ii) prevent the formation of a lattice in Fig. 6.2 (c)(ii)–

(d)(ii)

In Fig. 6.2 (a) (iv)–(d)(iv), we see that while the instantaneous density profile, Fig. 6.2

(a)(iv), contains sharp fluctuations, a hexagonal vortex lattice endures in the averaged

density profile, Fig. 6.2 (c)(iv). Here the edges of the vortex cores appear fainter than

in the lattice of Fig. 6.2 (c)(v), due to oscillations in the position of the vortices in

individual trajectories. Indeed, the main difference between the averaged density profiles

of Figs. 6.2 (c)(i) – (c)(v) is that the lattice melts as the system becomes dominated by

fluctuations, which is the component of the thermal cloud that exists within the classical

region [281].

In the ensemble with the smallest additional energy, Fig. 6.2 (a)(v)–(d)(v), we see that

even in instantaneous profiles, Figs. 6.2 (a)(v) and (b)(v), the vortex lattice is preserved.

Indeed, the fluctuations due to this small amount of injected energy are highly smoothed

out by time and ensemble averaging [Figs. 6.2 (c)(v) and (d)(v)] so that we recover profiles

similar to the ground state of Fig. 5.4 (a).

In Fig. 6.3 we plot the time and ensemble averaged occupation of the Landau levels.

Here we define

n̄n =
1

tf − ti

∫ tf

ti

Nv−1∑
k=0

〈
|cn,k(t)|2

〉
dt, (6.8)

as the index of the state (vortex) does not enter into the expression of eigenenergies.

We notice that, by adding enough noise to the ground state (corresponding to a low

value of η), the distribution of Landau level occupation is proportional to 1/E, which

corresponds to classical equi-partition of energy over the modes. For a high value of

η, although the majority of the Landau level occupation is centered around the lowest

Landau levels, the effects of rotation on the system cause the formation of some structure

in the filling of higher modes corresponding to the vortex lattice. The value of η = 0.990

represents a crossover between these limits. A large proportion of the filling is in the

Lowest Landau levels, suggesting the presence of a condensate. However, higher modes
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Figure 6.3: The time and ensemble averaged occupation of cn,k as a function of Landau
levels for η = 0.982, solid red line, η = 0.990, dashed blue line, and η = 0.998, dot-dashed
black line. The equi-partition of energy, 1/E, green dashed line, is added as a guide to
the eye.

are still significantly occupied, destroying the lattice structure, and indicating the presence

of thermal effects.

6.3 Evidence of Transitions in Rotating 2D Bose Gases

6.3.1 First Order Correlation Functions

In a superfluid which is rotating at zero temperature, we expect to see an ordered hexago-

nal lattice of vortices. Thus we expect Nv points at which the phase winds by 2π. We also

expect to see Nv points at which the density vanishes (numerically this leads to several

computational grid points where the wavefunction is significantly different to the average

of the system). Although these vortices are real, and are present in the system due to the

rotation of the gas, their existence may cause spurious results in directly calculating G(1).

In order to overcome these difficulties we do the following: The ground state of the system

is a pure BEC at zero temperature, with a regular hexagonal lattice and wavefunction

Ψ(g)(r). We note that the ground state is fixed, as evolving the damped PGPE from

different initial conditions leads to the same lattice state. A system which has evolved

from some initial condition [as given by Eqn. (6.4)] has a wavefunction Ψ(r, t) at some

time t. Since the ground state is fixed, we can compute the “unwound” wavefunction

Ξ (r, t) = Ψ (r, t) Ψ(g)∗ (r) , (6.9)
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Figure 6.4: An example of the unwinding procedure given by Eqn. (6.9). Row (a) plots
the density of the wavefunction and row (b) plots the phase of the wavefunction. Column
(i) is the wavefunction at time ti for η = 0.998 with (ii) the corresponding unwound wave-
function. Column (iii) is wavefunction at time ti for η = 0.982 with (iv) the corresponding
unwound wavefunction.

which has the advantage that there is no phase winding when Ψ = Ψ(g). This means

that when the deviation from the ground state is small, such as when η ≈ 1, only a

small area of the cell will contain a non-zero phase, leading to G(1)(r) ≈ 1 uniformly

across the system. A sketch of this can be found in Fig. 6.4. It is also advantageous to

use Eqn. (6.9) to unwind the wavefunction, rather than simply subtracting the lattice

ground state from the phase profile Ψ′ = |Ψ| exp
[
iArg {Ψ} − iArg

{
Ψ(g)

}]
, as unwinding

prevents artificially adding “naked singularities” to the system when Ψ(r, t) 6= Ψ(g)(r);

these singularities would be points where the phase has multiple values but the density

does not vanish.

Computationally, the first order correlation function of Eqn. (6.9) is relatively straight-

forward to compute. The function becomes

G(1)(r) =
〈Ξ∗ (x, t) Ξ (x + r, t)〉√
〈|Ξ (x, t) |2〉〈|Ξ (x + r, t) |2〉

=

〈[
Ψ (x, t) Ψ(g)∗ (x)

]∗ [
Ψ (x + r, t) Ψ(g)∗ (x + r)

]〉√〈
|Ψ (x, t) Ψ(g)∗ (x)|2

〉〈
|Ψ (x + r, t) Ψ(g)∗ (x + r)|2

〉 . (6.10)

Since Ξ (x) is periodic (having unwound the phase) it is possible to compute the numerator

of Eqn. (6.10) using the Wiener-Khinchin theorem for autocorrelations,

〈Ξ∗ (x) Ξ (x + r)〉 = F−1 {F [Ξ (x)]∗F [Ξ (x)]} , (6.11)

which is easily computed using Fast Fourier Transforms (a result which can be found

using the convolution theorem). The two terms in the denominator are easily computed

as the ensemble averaged norm at x and x + r respectively.
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Figure 6.5: The first order correlation function given by Eqn. (6.10) for different values
of η. In panel (a), the dotted curves plot the fit to the algebraic decay in Eqn. (6.2) for
each value of η. In panel (b), the dashed curves plot the fit to the exponential decay in
Eqn. (6.3). In each case, the olive dot-dash curve is the algebraic decay at TBKT , given
by G(1)(r) = r−1/4. The point G(1)(0) = 1 is added for consistency.

For each of the curves in Fig. 6.5, the first order correlation function, Eqn. (6.10), is

calculated at a given time with an ensemble of 10 different realisations of initial conditions,

and the result of this is averaged over the latter half of the simulation. By construction,

G(1)(0) = 1.

It is clear from Fig. 6.5 (a) that there is a good agreement between the “coldest”

three systems (η ∈ {0.994, 0.996, 0.998}) and the algebraic fits. Such fits indicate that the

systems are below the BKT transition temperature, and therefore posses quasi-long-range-

order. There is a small discrepancy between the observed decay and the fit to Eqn. (6.2)

in the system where η = 0.994, we suggest that this is due to the relatively small size of

the system [306, 310, 313]. The algebraic fits fail for systems where η ≤ 0.990; as can be

see in in Fig. 6.5 (b), these curves are well suited to fitting an exponential curve, implying

that the curves are above the BKT transition, and long-range-order has been destroyed.

This is further supported by the fact that, for these values of η, the first order correlation

function clearly decays faster than the alegbraic decay with the universal exponent 1/4

at the BKT critical temperature.



74 CHAPTER 6. PHASE TRANSITIONS

6.3.2 Vortex Behaviour

A second key characteristic of the BKT transition is the behaviour of vortices. As we have

discussed in the introduction to this chapter, the idealised picture of the homogeneous

system in the absence of rotation is that for T < TBKT vortices live in tightly bound

dipole pairs, while for T > TBKT these pairs un-bind, and the system becomes a free sea

of vortices. In our system, however, not only will there always be a net number of vortices,

the ground state of the system at T = 0 contains Nv positively charged vortices, meaning

that the dipole distance is not well defined, in contrast to the typical BKT picture.

In Fig. 6.6 (a) we measure the average distance between nearest same-sign vortices,

dss. In order to do this, we locate the position of the vortices by using a vortex tracking

method, similar to the one described in Appendix C. Vortices which are positioned on a

lattice should be separated from their nearest like-sign neighbours by a constant distance,

shown by the black dashed line in Fig. 6.6 (a), which depends on the size of the system

and the number of vortices. As we decrease the value of η, we note that dss starts to

fluctuate, which corresponds to the lattice melting and the vortices moving from their

lattice position [see Fig. 6.2]. As the noise increases, the size of the fluctuations also

increases until eventually there is enough noise that enough short lived vortex-antivortex

pairs are injected into the system, so the size of the fluctuations in dss decreases but dss

continues to decrease, η ∈ {0.978, 0982}.
In order to calculate the distance between the nearest opposite-sign vortices, dos,

without this distance diverging in the lattice ground state, we must do more than just

detect the locations of the vortices. Inspired by the approach above, our solution is to

find the vortices as previously described, and then add an antivortex at each of the lattice

positions before working out the statistics. This ensures that for η ≈ 1, where we would

expect T � TBKT , the average distance dos is small. We plot the result of this calculation

in Fig. 6.6 (b). We see that, while η ≥ 0.990, as the amount of noise in the system

increases the average dipole length dos increases. This is due to the movement of the

vortices from their lattice positions. As the amount of noise in the system is increased,

for η < 0.99, the value of dos decreases: this is due to the nucleation of short-lived vortex-

antivortex pairs in the system [see Fig. 6.6, panel (c)] which “washed out” the ability to

identify vortex dipole pairs and vortex clusters [301].

In Fig. 6.6 (c) we plot the total number of vortices, Nv. It should be noted that in the

cooler systems, short lived vortex-antivortex pairs do not proliferate. In fact, as is shown

in the inset, on average we require that η ≤ 0.99 for additional vortices to be detected in

the system.

6.4 Conclusions and Outlook

In this part we have presented an efficient method for simulating a harmonically trapped

Bose gas, which is rotating at the centrifugal limit. We have shown that it is possible



CHAPTER 6. PHASE TRANSITIONS 75

𝜂𝜂 = 0.978 𝜂𝜂 = 0.986
𝜂𝜂 = 0.990𝜂𝜂 = 0.982 𝜂𝜂 = 0.996

𝜂𝜂 = 0.994 𝜂𝜂 = 0.998
Ground state

0

𝑑𝑑 𝑠𝑠
𝑠𝑠

𝑑𝑑 𝑜𝑜
𝑠𝑠

𝑁𝑁 𝑣𝑣

(a)

𝑑𝑑 𝑠𝑠
𝑠𝑠

(b)

(c)

6.0

8.0

Figure 6.6: Vortex statistics as the strength of the noise η varies. Panel (a) gives the
average distance from one vortex to the nearest vortex with the same sign, dss; the black
dashed line gives the value which we measure in the ground state of the vortex lattice.
Panel (b) gives the average distance from one vortex to the nearest vortex with opposite
sign, dos, after anti-vortices have been imposed at the lattice positions. Panel (c) gives
the number of vortices in the system; the inset shows that, on average, short-lived vortex-
antivortex pairs are only nucleated as η ≤ 0.990.
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to do so without the issue of edge effects by choosing suitable quasi-periodic boundary

conditions. We have used the single particle basis functions with these quasi-periodic

boundary conditions to expand the wavefunction below an energy cutoff, thus implement-

ing the PGPE for this rotating system. There are two primary sources of error which arise

from such a pseudospectral method in this case; these are the error in projection caused

by choosing an energy cut-off, M , and the error associated with truncating an infinite

summation appearing in the basis functions themselves. We have quantified these errors,

and have shown that for suitable choices of simulation parameters it is possible to reduce

these errors to an acceptably small value.

On adding damping to the equation of motion, the PGPE method which we present

relaxes from non-equilibrium initial conditions to the expected regular lattice ground

state, Fig. 5.4. It is also useful to be able to set up an initial condition of Nv vortices

with arbitrary integer charge placed at any point in the domain (subject to symmetry

conditions).

In Chapter 6 we have investigated the melting of a vortex lattice by perturbing the

ground state of the system. We observed that for a small amount of added noise the

vortices are able to move away from lattice positions, while for larger amounts of noise

there are short-lived vortex-antivortex pairs injected into the system. We also calculated

the distribution of Landau level occupation as the amount by which the lattise ground

state is perturbed increases, and found that for large perturbations this distribution is

approximated by the equipartition of energy.

Finally, in a significant additional development to the results presented in our Physical

Review E paper [101], we have explored the link between the lattice melting (described

above) and the BKT phase transition. For the rotating system, it is not straightforward

to calculate the first order correlation function or vortex statistics as is in the homoge-

neous system. Instead, we formulate a way in which to calculate the first order correlation

function whereby the wavefunction is unwound about the lattice ground state. We ob-

serve clear evidence of a transition from an algebraic decay in G(1) for small amounts of

noise (suggesting T < TBKT ), to an exponential decay (suggesting T > TBKT ) for larger

amounts of noise, indicating the validity of the “unwinding” technique. We have also

conducted preliminary calculations of vortex statistics, although more complex methods

are required to determine the exact vortex unbinding point in this system.

Future work in this area will be concerned with identifying TBKT in a rotating system.

Significant progress has been made in calculating G(1) in the PGPE which we describe,

however a next step will require that we compute temperatures from the microcanonical

ensemble [132, 314–318]. In order to identify the role of vortices and vortex pair unbinding

in the rotating system, it is likely that a coarse-graining procedure (such as the one

employed by Foster et al., [301]) may be utilised to accurately identify free vortices, and

therefore vortex pair unbinding. Alternatively, a recursive clustering algorithm such as

the one presented in Ref. [87], might be employed to detect vortex dipoles or clusters of
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same-sign vortices. As a final hallmark of the BKT transition, it would be desirable to

calculate the superfluid fraction of the system at a given temperature; such a calculation,

based on the derivations presented in Refs. [111, 301, 310, 319, 320] (see Appendix. A.5),

will be modified by the fact that our system is in the Landau gauge and rotating at the

centrifugal limit, but is in principle possible.
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Part III

The Dirty Boson Problem
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Chapter 7

Critical Velocity of a Disordered

Potential

7.1 Disorder in a Superfluid

A prototypical study of turbulence in fluids is that of the wake behind a cylinder in a flow

[321]. As we discussed in Section 1.4.2, in classical fluids, the degree of turbulence in the

flow can be encoded by the dimensionless Reynolds number Re = UL/ν, where U is the

velocity of the uniform flow, L is the size of an obstacle in the flow, and ν is the kinematic

viscosity of the fluid. Dynamical similarity allows us to map flows with different U , L and

ν to the same flow pattern, so long as the combination UL/ν is the same. In a superfluid

flow, although ν = 0, it has been shown that quantum fluids exhibit dynamic similarities

in the same way classical fluids do [99].

A superfluid is characterized by frictionless flow in the absence of viscous effects. For

a sufficiently small velocity, the flow around an obstacle is steady laminar flow and no

vortices are nucleated [186]. Above a critical velocity, the flow around an obstacle creates

a drag force which is responsible for the nucleation of quantized vortices [51, 182]. These

vortices signal the breakdown of superfluidity in the system at zero temperature [51, 57,

60, 215, 322, 323]. Immediately above the critical velocity, pairs of oppositely charged

vortices are shed periodically from opposite sides of the obstacle [184]. As the velocity

of the flow around the obstacle increases, there is a transition from the regular shedding

of vortex dipole pairs to an irregular shedding of larger clusters of same-sign vortices,

indicating that the system has become turbulent [100, 186]. The transition to turbulence

in superfluid flow past a potential obstacle has been the focus of recent theoretical [87,

99, 181, 183, 186, 324] and experimental [100, 179, 184, 216] work. These works have

investigated the effect of obstacle shape [183, 185, 325] and finite temperature effects

[181, 324] on the critical velocity for vortex nucleation past a single obstacle.

As no real system is truly free of imperfections, disorder is an important consideration

in interacting Bose systems, with the interplay between disorder and particle-particle in-

teractions providing a rich test bed for many-body quantum physics. Studies into disorder

81
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in BECs have employed impurities [326], rough boundaries [203, 327] and optical speckle

patterns [328–336]; the latter playing a role in the prediction of a lowered superfluid

transition temperature in 2D [332] and 3D [329, 330, 332]. The realisation of Anderson

localization [333], and the transition to an exotic Bose glass [334, 336]. While disorder

is an important consideration, few studies have considered the case of a superfluid flow

in the presence of a point-like disordered potential. Such a disorder potential is now ex-

perimentally realisable, as new optical techniques employing digital micromirror devices

(DMDs) allow experiments to have an unprecedented level of control in creating arbitrary

shaped potentials [23–25].

Forcing a quasi-two-dimensional superfluid through a disordered potential faster than

the critical velocity is a process which injects vortices into the system. These then decay

by a process of vortex-antivortex annihilation, which is similar to the coarsening process

which takes place after a thermal quench. Such coarsening is a current topic in 2D Bose

gases, with investigations into the phase-ordering kinetic taking place in conservative

[88, 93, 308, 313, 337–339] and dissipative [88, 93, 308, 309, 313, 339] simulations, as

well as in systems of binary BECs [340], spinor BECs [341, 342], and exciton-polariton

condensates [343–346]. Previous works on single component Bose gases have conducted

quenches by starting from non-equilibrium initial conditions which tend to rapidly seed

an approximately isotropic distribution of vortex dipoles [152, 181, 232, 313, 324], while

other studies have imprinted a random distribution of vortices with unit charge [196, 339]

or multiple charges [308]. Here, we also observe a system which transitions from a non-

equilibrium state containing many vortices to an equilibrium state, and use an energy- and

number-conserving description similar to the conservative systems mentioned above. Our

system, however, has several key differences. Firstly, the vortex injection in our system

is different; unlike the initial conditions discussed above, the vortices which are created

by a series of barriers have an anisotropic initial position which depends on the details

of the barriers (the location, shape, size, etc.), and the speed of the superfluid. Secondly,

the vortex injection is not instantaneous; rather vortices are shed over time from the

barrier as the barrier moves through the superfluid above the critical velocity. Despite

these differences, the system we describe provides a relatively simple way to generate

non-equilibrium conditions which can be used to study related coarsening behaviour in a

BEC.

In this part we investigate the dynamics of dense superfluid flow through a point-like

disorder potential: a scenario which combines disorder, turbulence and coarsening in a

2D Bose gas. We impose the point-like disorder potential through an external trapping

which is taken to be zero everywhere, apart from at a series of points where a localised

repulsive barrier is placed . These repulsive barriers, which are Gaussian in shape, may be

thought of as a set of blue detuned laser beams whose intensity can be controlled at any

point in space [23–25]. Unlike the disorder which is imposed by an optical speckle pattern,

a key feature of this work is that the barriers which comprise the disorder potential are
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sufficiently separated (i.e. several healing lengths apart) so that the fluid is homogeneous

away from the centre of the barrier. This ensures that it is possible to have a global

superfluid phase, since localization of the condensate does not play a role [333], and we

can treat quantities such as the speed of sound and the healing length as constant across

the system.

The rest of this part is structured as follows. In Sec. 7.2 we introduce the equation

of motion for a system which has a disordered point-like potential dragged through it.

In Sec. 7.3 we calculate the critical velocity for vortex nucleation for different potentials,

formed by randomly arranging collections of point-like barriers. We begin by placing two

identical point-like barriers in a superfluid flow, and study the interplay between relative

separation and the incident angle of the barriers on the critical velocity. We then look at a

system with many point like barriers, and investigate the link between the density of these

point-like barriers and the critical velocity of the system. In Chapter 8, we study the long

term behaviour of an initially non-equilibrium superfluid flowing through a disordered

potential at varying initial velocities. We measure the condensate fraction, the superfluid

fraction, and the superfluid velocity during this process. This illustrates how at short

times the superflow breaks down, accompanied by vortex generation and depletion of the

condensate fraction. At intermediate times, the momentum of the Bose gas continues

to be arrested by interaction with the barriers, as vortex-antivortex annihilation begins.

Over longer times, vortices continue to annihilate and thermalization takes place; the gas

recondenses and superfluidity is restored. In Sec. 8.2, we investigate the effect of varying

the effective barrier width on the vortex decay rate. For small point-like barriers (the

radius of which is on the order of a single healing length), the vortex decay rate follows

the expected rate which follows a thermal quench. We show that for sufficiently large

barriers this changes, and at the same time vortex pinning becomes an important effect

in the dynamics of the system.

7.2 System and Numerical Implementation

We consider an obstacle which is moving at a steady velocity v through a superfluid which

is otherwise uniform in the xy plane, and trapped strongly enough in the z direction

that all excitations are suppressed in this direction. Such a 2D system, when comprised

of a weakly interacting atomic Bose gas at finite temperature, can be described by a

wavefunction Ψ which obeys the projected Gross-Pitaevskii equation (PGPE), Eqn. (2.34),

i~
∂Ψ

∂t
= P

{[
− ~2

2m
∇2 + Vobj(r) + g2D|Ψ|2 − µ2D

]
Ψ

}
.

As before, µ2D is the chemical potential and the strength of the atomic interactions is

parameterized by g2D =
√

8π~2as/mlz, where m is the atomic mass, as is the s-wave

scattering length, and lz =
√

~/mωz is the harmonic oscillator length in the z direction.
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We impose a uniform flow with velocity v in the x̂ direction by multiplying the initial

wavefunction by a phase gradient (see, for example, Ref. [325]). The crucial feature of

the PGPE, beyond the ordinary non-projected Gross-Pitaevskii equation, is the projec-

tion operator P which implements an energy cutoff in the basis of non-interacting single

particle modes. When working at finite temperature, this allows one to set the cutoff so

that modes below the cutoff are highly occupied. In this regime quantum fluctuations are

relatively small and the classical field description is accurate [133].

Alternatively, we can consider the system in which the obstacles are dragged through

the fluid at some velocity v. In this system, the coordinate of the obstacle reference frame

is r = rL + vt, and the lab-frame wavefunction Ψ(r, t) = ΨL (rL, t). The PGPE governing

the lab-frame wavefunction is given by

i~
∂Ψ

∂t
= P

{[
− ~2

2m
∇2 + Vobj (r) + g2D|Ψ|2 − v · p− µ2D

]
Ψ

}
, (7.1)

where the Gallilean shift to the obstacle frame (from the lab-frame) is given by the v · p
term, with p = −i~∇ the usual quantum momentum operator1 [127]. Eqn. (7.1) is the

result of applying the projection operator to the GPE which has had a Gallilean shift

applied to it, Eqn. (2.31).

To simulate an obstacle which is a collection of point-like barriers, we use the sum of

NB repulsive Gaussian potentials,

Vobj(r) = V0

NB∑
k=0

exp

[
−(x− xk)2

a2
− (y − yk)2

a2

]
, (7.2)

which have their centers at (xk, yk). These barriers each have an effective cylinder width

which can be estimated from the zero density region of the Thomas-Fermi approximation,

2a
√

ln (V0/µ2D). In contrast to previous works which use hard-walled barriers [183, 186],

we use soft-walled barriers [with V0 = µ2D exp(1)] where the critical velocity is lower [325].

Unless otherwise stated, we take barriers to have a narrow waist, a = ξ, thus providing a

point like potential with an effective cylinder width 2ξ.

In what follows, we take v = −vobstx̂. The single-particle modes for this system are

plane waves satisfying |k| < kcut, for some wave-number cutoff kcut. To implement the

cut-off, we ignore Vobj as it will not affect the potential on the scale of 1/kcut, and hence

does not affect our choice of basis functions. The PGPE is evolved numerically, with dou-

bly periodic boundary conditions, using an adaptive Runge-Kutta method (implemented

using XMDS2 [348]) on a Lx × Ly grid with Nx × Ny grid points. We take the energy

cutoff to be kcut = πNx/ (2Lx)−π/Lx. In the rest of this part, we typically express quan-

tities with reference to energy µ2D, healing length, ξ = ~/√mµ2D, density, ρ0 = µ2D/g2D,

and the speed of sound, c =
√
µ2D/m. Consequently, times are expressed in units of

1Note that any aliasing problems which may have arisen when computing the first derivative term
in Eqn. (7.1) using Fast Fourier Transforms are corrected by the cut-off implemented by the projection
operator [347].
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τ = ~/µ2D. The number of grid points in our simulations is chosen such that there are

two computational grid points per healing length.

7.3 Critical Velocity of Point-Like Disordered Poten-

tials

7.3.1 Method for calculating the critical velocity

In order to find the critical velocity, we first find the ground state of the condensate in the

presence of the point-like potentials. To do this, we evolve the damped PGPE, found by

multiplying the right hand side of Eqn. (2.31) by (1− iγ), where γ is a phenomenological

damping parameter [144], with stationary barriers vobst = 0, and for γ = 1, up to t =

5000τ . This converges to a wavefunction which is approximately the ground state of the

system, and which will be the initial condition for all of the following simulations. We

then set γ = 0 and evolve Eqn. (2.31), with v = −vobst(t)x̂, whilst smoothly ramping up

the velocity [183] according to

vobst(t) = vf tanh

(
t

200τ

)
. (7.3)

Smoothly increasing the velocity in this way prevents the generation of sound which would

be caused by instantaneously setting vobst = vf . This simulation is run for 1000τ so that

the barriers have moved through the fluid with speed vf for some time, but not so long that

thermal effects caused by numerical noise begin to lower the critical velocity [324]. The

value of vf is increased discretely until vortices are observed to be shed from the potential.

For reference, the critical velocity of a single point-like barrier is vcrit/c = 0.5625±0.0025.

7.3.2 A Pair of Point-like Barriers

We begin by finding the critical velocity of two point-like barriers, as we vary the relative

distance and angle between these barriers. Without loss of generality, we place one barrier

at the origin, and one barrier at (−R cosα,−R sinα). The results of this are plotted in

Fig. 7.1.

When α, the angle between the barriers in the direction of the flow, is small, the system

has an increased critical velocity as the barriers are behind each other in the direction of

the flow, becoming streamlined. As α increases, the critical velocity decreases since the

barriers become a more like an effective elliptical obstacle, causing a denser wake [183].

An important observation which we make is that for the case where R = 4ξ, the two

barriers act as one larger (essentially elliptical) barrier, and for v ' vcrit will shed only

one dipole pair of vortices. In the cases where R ≥ 8ξ, the barriers act independently and

both of the point-like potentials will emit a dipole pair, for flow speeds just above vcrit.
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Figure 7.1: The critical velocity of two point-like barriers, with separation distance R,
and angle α incident to the direction of the flow. Blue circles represent barriers with
separation R = 4ξ, red squares represent barriers with separation R = 8ξ, green crosses
represent barriers with separation R = 12ξ, and orange pluses represent barriers with
separation R = 16ξ. The olive region is the critical velocity of a single point-like barrier,
plotted as a guide to the eye (the width indicates numerical uncertainty). The error from
the the systematic uncertainty due to increasing vx in discrete steps is smaller than the
symbols used.
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The flattening of the curves indicates that, as we would expect, vcrit tends towards the

single barrier limit as R→∞.

7.4 Multiple Barriers

Having found the critical velocity for a pair of point-like barriers, we now find the critical

velocity for NB barriers which are placed at random in the cell2, subject to a minimum

separation of 4ξ. The process is the same as before, in that the “overdamped” GPE is

used to find the ground-state of the potential in the absence of velocity. We then ramp

the flow velocity using the tanh profile in Eqn. (7.3) for discretely increasing values of vf .

A vortex detection algorithm similar to Ref. [301] is used to automate the search.

In Fig. 7.2 we plot the critical velocity of a disordered system, as a function of the

angle between the nearest neighbour pair of point-like potentials in the particular dis-

order realization, n.n. α. We choose this measure because we expect that the critical

velocity of a particular potential will be most sensitive to the configuration of the pair of

barriers with the smallest separation, as shown by the range of values in the blue curve

of Fig. 7.1. The panels of Fig. 7.2 correspond to the binning of the nearest neighbour

distance between the closest two point-like barriers in each realization, while the type of

marker represents the total number of barriers in the system, NB. The gray shaded area

indicates the region which contains the critical velocity of a system of 2 point-like bar-

riers whose separation distance corresponds to the separation distance of the panel. For

larger n.n.α, the nearest neighbour interactions of the closest pair of point-like barriers

dominate the critical velocity, as can be seen by the points lying within the gray shaded

region. Where the closest nearest neighbour barriers form a streamlined barrier, given

by smaller n.n.α, the critical velocity is smaller than the two barrier case; this is due

to two factors. Firstly as NB increases, so does the probability that other (non-closest)

pairs of nearest-neighbour barriers are separated by a similar distance but have a large

angle against the flow, creating an efficient vortex emitter. Secondly, given that there

are multiple barriers in the system, the critical velocity is limited by the single barrier

case – any barrier which is sufficiently separated (' 20ξ) from the other barriers will act

independently, and cause vortices to be present in the system as soon as the flow velocity

is greater than the critical velocity for a single point-like barrier. Indeed, we observe that

the critical velocity of a point-like disordered potential is bounded above by the lowest

of: (a) the critical velocity of a single barrier; (b) the highest critical velocity of the two

barrier test case for equivalent nearest-neighbour separation of the closest two barriers.

2For a small number of barriers and a small minimum separation, relative to the size of the cell, the co-
ordinates of the centres of the obstacles could be found by sampling xk xk from a uniform U(−Lx/2, Lx/2)
distribution and sampling yk from a uniform U(−Ly/2, Ly/2) distribution NB times. The potential would
be rejected, and the process repeated, if a pair of coordinates were closer than the required minimum
separation. For a much larger number of barriers, or for a minimum separation which is large relative
to the size of the cell, it would be necessary to use a random-walk algorithm to efficiently position the
obstacles.
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Figure 7.2: The critical velocity of a disordered potential with NB point-like barriers.
Organised by nearest neighbour distance (n.n. R) between the barriers, panel (a) has
4ξ ≤ n.n. R < 5ξ, (b) has 5ξ ≤ n.n. R < 6ξ, (c) has 6ξ ≤ n.n. R < 7ξ, (d) has
7ξ ≤ n.n. R < 8ξ, (e) has 8ξ ≤ n.n. R < 12ξ, (f) has 12ξ ≤ n.n. R. Different markers
represent varying barrier density. The gray shaded area indicates the region containing
the critical velocity of an isolated pair of point-like barriers when their separation distance
lies within the range of nearest neighbour distances for the panel. The olive shaded area is
the critical velocity of one point-like barrier (the width indicates numerical uncertainty).



Chapter 8

Arrest of a Superflow

8.1 Velocity Dependence

Driving a superfluid through a disordered potential faster than the critical velocity injects

vortices into the system. The resulting non-equilibrium dynamics are a key object of study

in two dimensional quantum turbulence, and have been employed as the initial conditions

of studies into quenches both in the highly turbulent clustered case [308], and the dipole

dominated case [152, 181, 232, 313, 324]. In this section, we consider a superfluid which is

initially flowing through a disordered point-like potential, with an imposed velocity which

is greater than the critical velocity of the potential. We observe that the reaction of the

fluid is to be arrested by the barriers, suggesting that viscous effects enter the system,

before the system equilibrates. The manner in which this disordered system reaches an

equilibrium state has connections with quantum turbulence and coarsening in 2D Bose

gases.

In this section, we consider one disordered potential with NB = 25 barriers in a system

with dimensions Lx = 256ξ by Ly = 64ξ. As the system consists of a superfluid initially

moving through the point-like barriers above the critical velocity, the formation of elemen-

tary excitations causes the system to fall out of equilibrium [349, 350]. To investigate the

turbulence in such a system, we measure the condensate and non-condensate fractions,

the velocity of the condensate and non-condensate fractions, and the number of vortices

which are nucleated by the obstacle.

In order to perform ensemble averaging we add a small amount of complex white noise

to the groundstate of the wavefunction, (approximately equal to 1% of the background

density). This small amount of initial noise ensures that the system dynamics, and in

particular vortex motion, differs in each realization, such that statistics are not domi-

nated by particular vortex trajectories. Averaging over this ensemble allows us to reliably

calculate condensate fractions, condensate velocities, and superfluid fractions.

In order to perform an analysis of this system in the long time limit, we evolve the

PGPE prescribed in Eqn. (2.38). This is expressed in the frame where the barriers are at

89
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rest and the wavefunction is given an instantaneous initial boost,

Ψ (r, 0) =
[
(1− η) Ψ(g) (r) + η$(r)eiϕ(r)

]
exp

(
−2πivintx

cLx

)
, (8.1)

where Ψ(g)(r) is the wavefunction in the ground-state of the system, η is the amount of

noise to be added,

vint =
⌈vobst

∆v

⌉
∆v, (8.2)

where d·e is the ceiling function, and ∆v = 2πcξ/Lx is the smallest velocity representable

on the grid in the x direction. The random variables are $(r) ∼ U [0, 1] and ϕ(r) ∼
U [0, 2π), and we renormalize such that the initial condition has the same normalisation

as the ground state. We choose to evolve Eqn. (2.38) as it keeps the late-time, close-to-

equilibrium momentum distribution of the system close to symmetric about k = 0. Since

the k-space cut-off imposed by the projector is symmetric about k = 0, this choice helps

ensure that the system is evolving towards a well-defined PGPE equilibrium, and hence

that the calculation of the momentum-momentum correlations required to compute the

superfluid fraction (Sec. 8.1.3) may be performed without the need to perform a gauge

transformation.

8.1.1 The Condensate and Non-Condensate Fractions

Where obstacles are dragged through a system at a speed sufficiently above vcrit, a large

number of vortex-antivortex pairs are nucleated, forming a complicated phase field [100].

Annihilation events between the vortex-antivortex pairs lead to the generation of sound

in the system, which causes a depletion to the condensate fraction; this marks the onset

of a dissipative regime.

Using the criterion of Penrose and Onsager [15], within the c-field formalism [133], we

calculate the condensate and non-condensate fractions from the one body density matrix

G1B (r, r′) = 〈Ψ∗ (r) Ψ (r′)〉T , (8.3)

where 〈 · 〉T indicates short time averaging1. This fraction is calculated for each of the tra-

jectories before averaging over all trajectories. The condensate number can be identified

as the largest magnitude eigenvalue of the one-body density matrix, while the correspond-

ing eigenvector, ψ0, is the condensate mode. Under this formalism, we deconstruct the

wavefunction into contributions from the condensate mode and the non-condensate,

Ψ = n0ψ0 + nncψnc, (8.4)

1In the simulations presented here, we averaged over windows of 10τ . We can compare this to the
timescale in which a particle of the fluid might travel between two barriers: τB = LB/vobst, where
LB = 4ξ is the minimum separation of two barriers, and vobst ∈ {1.0, 1.2, 1.4, 1.6}c is the initial relative
speed of the barriers. Thus the sampling window is between τB = 5ξ/(2c) and τB = 4ξ/c.
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Figure 8.1: Snapshots of a flow past a disordered point-like potential at (a) t = 10τ , (b)
t = 40τ , (c) t = 470τ and (d) t = 20000τ . The flow speed is vobst = 1.2vcrit.
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where n0 is the condensate fraction and nnc is the non-condensate fraction, so that

n0 + nnc = 1. The non-condensate mode, ψnc, is the sum of the eigenvectors of G1B

excluding ψ0. Within the c-field formalism, the condensate and non-condensate modes

are orthogonal. Further details of this process are given in Appendix A.4.

The average condensate fractions for obstacles which are dragged through the fluid

with velocity vobst ≥ vcrit are plotted in Fig. 8.2, row (a). In systems where vobst ≥
vcrit, there is an initial depletion of the condensate fractions as the barrier sheds vortices

which are subsequently annihilated, ultimately heating the system [215]. We observe that

the size of the depletion of the condensate fraction (and therefore the spike in the non-

condensate fraction) monotonically increases with the velocity of the obstacle which is

consistent with the finding of Refs. [51, 325]. Eventually, the energy which is injected

into the system by annihilation events is carried away by phonons [51, 350], and the

system relaxes to a uniform flow. This is shown by the increases and then plateauing of

the condensate fraction, indicating that the system has reached equilibrium and no further

vortices are shed. We see that the long term behaviour of the condensate fraction depends

on the speed of the obstacles; in the system where vobst = vcrit the average condensate

fraction over the last 20% of the simulation is n0 = 0.8343, where as for vobst = 1.6vcrit

the same average is n0 = 0.6160. This is to be expected, as the faster initial boost injects

more energy into the system creating a hotter final state.

8.1.2 The Velocity of the Condensate and Non-Condensate Modes

As the shedding of vortices causes the depletion of the condensate fraction, we would

expect the presence of thermal effects to lower the critical velocity [324] which in turn

would lead to the nucleation of more vortices, until the condensate is depleted. In fact,

since the long term behaviour of the condensate fraction is to equilibriate, we deduce that

the system stops shedding vortices. This indicates that the system dynamically reacts to

the obstacle velocity.

In dimensionless form, the velocity of the condensate mode ψ0 and the non-condensate

mode ψnc, is [13]

vk
c

=
1

2i

(
ψ∗k∇̃ψk − ψk∇̃ψ∗k

)
|ψk|2

, (8.5)

where k ∈ {0, nc} and ∇̃ = ξ∇. We calculate the average velocities of the condensate,

v0(t) =
1

LxLy

∫
d2r

v0

c
· x̂, (8.6)

and non-condensate,

vnc(t) =
1

LxLy

∫
d2r

vnc

c
· x̂, (8.7)

and plot them in the barrier reference frame in Fig. 8.2, row (b).

In the presence of the barriers, the fluid nucleates vortices where vobst ≥ vcrit. As these
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Figure 8.2: Evolution of statistics at different obstacle speeds for column (i) vobst = vcrit,
column (ii) vobst = 1.2vcrit, column (iii) vobst = 1.4vcrit, and column (iv) vobst = 1.6vcrit.
Row (a) displays the condensate (blue circles) and non-condensate (red pluses) fractions.
Row (b) is the velocity of the condensate mode (blue circles), the velocity of the the non-
condensate mode (red pluses), and the approximate velocity of the normal fluid (black
curve) given by Eqn. (8.13); the grey dashed line indicates vobst, while the grey dotted line
indicates zero velocity. Row (c) shows the superfluid fraction computed using the current–
current correlations (blue circles), the approximated superfluid fraction described in the
text (blue dotted line), and the normal fluid fraction (red pluses). Row (d) plots the
vortex number; insets show the vortex number on a log-log scale. The markers are added
to help distinguish between curves, rather than indicating individual data points.
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vortices nucleate, a phase winding is imparted on the wavefunction, which causes the fluid

to decelerate as it attempts to match the speed of the obstacle. In the long time limit,

we observe that the velocity of the condensate and non-condensate modes is arrested by

the barrier, suppressing further vortex nucleation. The drag force which is exerted on the

obstacle potential by the fluid can also be measured, [186], and we find that this vanishes

as the system evolves.

We note that we also expect to see a variation in the velocity in the y direction, as

different configurations of the barriers act as airfoils, [185], causing a lift effect. In our

simulations, since u = vobstx̂, this variation depends on the configuration of the barrier,

but it is always small in comparison to the velocity change in the x direction.

8.1.3 The Superfluid and Normal Fluid Fractions

In order to understand the mechanism by which the velocity of the condensate and non-

condensate modes are arrested by the barrier, we calculate the superfluid and normal fluid

fractions. We calculate these fractions in two different ways, further details of which can

be found in Appendix A.5.

Firstly, we assume that the current, J, of the wavefunction can be decomposed into

contributions from a superfluid component (which flows without energy loss) and a normal

fluid component (which is subject to viscous effects). We expect that the normal fluid will

move with the barriers, and so in the frame of reference where the barriers are stationary,

the velocity of the normal fluid will vanish once the system is in equilibrium. Since

the superfluid velocity is locked to the condensate velocity [351, 352], assuming that the

velocity of the normal fluid is zero leads to an estimate of the superfluid fraction ρs using

J = ρsρ0v0, (8.8)

where v0 is the condensate velocity introduced in the previous section.

Secondly, one can compute the superfluid fraction by noting that the (α, β) element

of the current-current correlations of the system in thermal equilibrium can be written as〈〈
[F (J)]α [F (J)]∗β

〉
T

〉
R
∝ ρs

kαkβ
k2

+ ρnδαβ (8.9)

in the limit of vanishing momentum [111], where α, β ∈ {x, y}. Here ρs and ρn are the

superfluid and normal fluid fractions, and F(J) is the Fourier transform of the current of

the wavefunction. The angled brackets 〈〈 · 〉T 〉R indicate that the correlations are found

by short time averaging and by averaging over the ensemble of initial conditions. It is then

possible to extract the superfluid and normal fluid fractions by fitting the current-current

correlations of the wavefunction to the right hand side of Eqn. (8.9), [301]. Formally

this method is only valid at equilibrium. Here we employ it with ensemble- and short-

time-averaging to give a dynamic measure. We expect this measure to be quantitatively

accurate at late times as equilibrium is approached, since we observe the current-current
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vobst 〈n0〉T 〈v0〉T 〈vnc〉T 〈ρs〉T approximate 〈ρs〉T

0.8vcrit 0.9986 -0.4353 -0.3569 —— 0.9974
vcrit 0.8343 -0.0756 -0.0468 0.9356 0.9303

1.2vcrit 0.7721 -0.0704 -0.0431 0.9194 0.9072
1.4vcrit 0.6916 -0.0726 -0.0424 0.8880 0.8668
1.6vcrit 0.6160 -0.0671 -0.0381 0.8532 0.8296

Table 8.1: A summary of the observables averaged over the last 20% of the simulation.
Column 1, the initial velocity of the fluid relative to the barriers; column 2, the condensate
fraction n0; column 3, the condensate velocity v0; column 4, the non-condensate velocity
vnc; column 5, the superfluid fraction ρs found using current–current correlations; column
6, the approximate superfluid fraction found by decomposing the momentum, J.

correlations remain well fitted by the expected functional form here. At earlier times,

further from equilibrium, fits to the expected functional form of the correlations fail, and

the measure only provides a qualitative indication of the lack of superfluidity.

The superfluid fraction of the system is plotted in Fig. 8.2, row (c). Where the

superfluid fraction (computed using the current–current correlations) is negative, or the

normal fluid fraction is greater than 1, it is clear that the condition of vanishing momentum

is not met. This condition is better fulfilled at later times, where the velocity of the fluid

has been arrested by the barrier [see Fig. 8.2 row (b)]. The fluid must respond to the

boost which is initially imposed, and so the velocity of the normal fluid at t = 0 is not

necessarily zero. This explains why, at very early times, the superfluid fraction computed

by decomposing the momentum of the wavefunction is greater than 1.

At earlier times, there is a jump in the normal fluid fraction which equates to the

absence of superfluidity. It is this mechanism which forces the fluid to be arrested by

the barrier: the appearance of many vortices is associated with a rise in the normal fluid

component which is subject to viscous effects, causing the fluid to be decelerated by

the barrier. At later times, the superfluid fraction grows and equilibrates with the fluid

velocity now approximately zero. By the end of the simulation, both measures of the

superfluid fraction are in good agreement with each other, as can be seen in the final two

columns of Table 8.1.

As the velocity of the barriers is increased, the final superfluid fraction decreases.

In the system where vobst = vcrit the average superfluid fraction over the last 20% of

the simulation is ρs = 0.9356 using current–current correlations, and ρs = 0.9303 by

decomposing the current of the wavefunction; in the system where vobst = 1.6vcrit these

values are ρs = 0.8532 and ρs = 0.8296 respectively. This is an analogous result to the

depletion of the final condensate fraction as vobst increases.

8.1.4 The Superfluid and Normal Fluid Velocities

While a slow but non-zero final velocity of the superfluid (i.e., a small remnant superfluid

velocity) is not physically unexpected, it is interesting that we do not observe the non-
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condensate velocity vnc reaching zero over the timescale of our simulations. However,

as noted above and as can be seen in Table 8.1 columns 5 and 6, while the superfluid

fractions found by current-current correlations and found by assuming that the normal

fluid components give similar answers, these two quantities are not equal. This suggest

that part of the non-condensate fraction contributes to the superflow.

We now approximate the velocity of the normal fluid in the system. The expected total

momentum of the fluid can be written in terms of the condensate and non-condensate

fraction
J

ρ0

= n0v0 + nncvnc, (8.10)

or, in terms of the superfluid and normal fluid fractions

J

ρ0

= ρsvs + ρnvn (8.11)

Therefore, for the average velocities in the x-direction we should have

ρsvs + ρnvn = n0v0 + nncvnc, (8.12)

where vs and vn are the average superfluid and normal fluid velocities [an analogous result

to Eqns. (8.6) and (8.7)]. In this analysis, we no longer assume that vn = 0, the velocity of

the normal fluid is zero. Instead, since the superfluid velocity is locked to the condensate

velocity, vs = v0, we can use our estimates of n0, nnc, v0 and vnc from the Penrose–Onsager

analysis and our estimates of ρs and ρn from the current-current correlation analysis to

extract the normal fluid velocity from Eqn. (8.12) as

vn =
(n0 − ρs) v0 + nncvnc

ρn
. (8.13)

The value of normal fluid velocity vn obtained from Eqn. (8.13) is plotted as the black

curve in Fig. 8.2 row (b). At late times, the value of vn is approximately zero; the

small fluctuations are due to the combination of uncertainties from the Penrose-Onsager

calculations, section 8.1.1, and the calculations of the current-current correlations, section

8.1.3. We also note that vn found in Eqn. (8.13) is much closer to zero than vnc, suggesting

that a significant amount of the non-condensate fraction is contained within the superfluid.

This measurement of vn suggests that the results of our condensate and superfluid

analysis are consistent. During our simulations, the interaction between the initial su-

perflow and the barriers has resulted in a normal fluid velocity which is approximately

zero, which coexists with a superfluid which has a remaining velocity which is significantly

smaller than the critical velocity of the system.



CHAPTER 8. ARREST OF A SUPERFLOW 97

8.1.5 The Vortex Number

Since the reaction of the fluid is to accelerate to catch up with the barriers, vortex anti-

vortex pairs are shed from the barrier only at the beginning of the simulation. This

leads to a peak in the vortex number as seen in row (d) of Fig. 8.2. It is evident that

the amplitude of the peak in Nv increases as vobst increases, this is because the vortex

shedding frequency increases with the velocity of the obstacle [325].

At the end of the simulation it is possible that a small number of vortices remain in

the system. The average number of such vortices at late times increases as the late-time

condensate and superfluid fractions decrease. Typically, for the barriers considered in this

section, this small number of vortices are not pinned to barriers but are free to move, and

hence consistent with thermal vortices in the fluid. We will discuss the role of free vortices

and vortices which become pinned to the barriers in more detail in the next section.

It should be emphasized that, while the results presented in this section are measure-

ments of one disordered potential averaged over an ensemble of ten initial conditions,

these results are applicable to other disordered point-like potentials. We have checked

that the results presented in Fig. 8.2 are qualitatively the same for other NB, so long as

vcrit is the same (within error bars). The effect of simulating a system which has a higher

(lower) vcrit is simply to steepen (flatten) the curves seen in Fig. 8.2, while the long-term

behaviour is unchanged.

8.2 Scaling and Turbulence

8.2.1 Overview

Until now we have only considered disordered potentials which consist of a number of

point-like barriers, with an effective radius of 1ξ, randomly placed in a periodic cell. We

now extend our parameter space to consider disordered potentials consisting of barriers

with a greater effective radius, and focus on analyzing vortex decay processes. In this

section we consider a square domain with dimensions Lx = Ly = 256ξ.

The numerical simulations which are carried out in this section can be related to

practical experiments. Periodic boundary conditions, such as those imposed in our simu-

lations, can be realised in one direction in experiments using ring traps [353] It is possible

to impose a persistent superflow current in such a geometry by stirring [354] or optical

methods [353], creating a superflow in the periodic direction. Technology such as DMDs

could be used to paint the stationary disordered potential in part or all of the ring trap

[25]. For a large, annular (i.e., tightly confined in the z-direction) ring trap, the main

difference from our simulations here would be the lack of periodic boundary conditions

perpendicular to the flow. We do not expect that difference to play a crucial role in the

dynamics as long as the difference between inner and outer radii of the annulus is a large

number of healing lengths. Interestingly, in addition to the studies performed here, in
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such a system one could switch off the disorder potential after the initial burst of vortex

injections; this could be used as a controllable way to inject a vortex distribution and

study the resulting coarsening dynamics without the point-like disorder.

In what follows, we will consider the number of mobile vortices, Nv, which are outside

the low-density regions at the centres of the barriers, and the number of pinned vortices,

W , which are contained within the zero-density regions at the centres of the barriers.

8.2.2 Vortex Decay Rate

The rate at which a gas of vortex dipoles decays has been the subject of much discussion

over the last decade [95, 179, 232, 338, 355]. The vortex decay rate has connections with

the growth of the correlation length of a system, Lc. As the system relaxes after a quench,

Lc should become the only relevant length scale, and it is predicted that Lc grows as

Lc(t) ∼ t1/z, (8.14)

where z is the dynamical critical exponent [217]. It is also predicted that, for randomly

distributed defects, the vortex number and the correlation length are linked as Nv ∼ L−2
c .

Based on experimental observations, the suggested phenomenological rate equation for

Nv is [179]
dNv

dt
= −Γ1Nv − Γ2N

2
v . (8.15)

Single vortex annihilations are prohibited as vortices are topologically protected quan-

tities, meaning that Γ1Nv describes the drifting of vortices out of the condensate (a

one-vortex mechanism), while Γ2N
2
v represents the rate of vortex-antivortex annihilations

(a two-vortex mechanism, in this model). However, the decay rate given by Eqn. (8.15)

does not match with the results of zero-temperature GPE simulations [95, 232, 338, 355].

This has led to the proposal of a corrected idealized decay rate [355]

dNv

dt
= −Γ1N

3/2
v − Γ4N

4
v , (8.16)

where it is argued that the drift and annihilation processes have a N
3/2
v and N4

v dependence

respectively. It has since been shown [95, 232, 355] that for a homogeneous system at zero

temperature Nv ∼ t−1/3 which is indicative of a four-vortex process, while the addition

of dissipation (finite temperature effects) or trapping potentials removes the need for a

fourth vortex (the N4
v scaling which describes a four-vortex annihilation process was also

observed numerically in Ref. [338]).

Due to the large proportion of our simulations which occur after the peak in vortex

number, it is possible to study the long-time behaviour of vortex decay in our disordered

potential systems in a similar fashion. As discussed earlier, we use the plaquette technique

[301] to enable vortex detection. Unlike before, where we focused on barriers with effective

radii 1ξ, for barriers which have an effective radii & 2ξ there is a significant zero density
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Figure 8.3: The decay of the number of vortices in a system as the barrier width varies.
Panels (a) and (c), the decay of the number of mobile vortices, Nv. Panel (e), the decay
of the number of pinned vortices, W . Panels (b) and (c), the decay of the total number
of vortices, (Nv +W). Panels (a) and (b) are plotted on a log-log scale, while panels
(c)–(e) are plotted on a semi-log scale. The power law Nv ∝ t−1, black dashed line, and
the exponential decay Nv ∝ exp (−Γ1t), black dotted line, are added as guides to the
eye. The markers are added to help distinguish between curves, rather than indicating
individual data points.
Above: a sketch of the 3 processes by which the number of mobile vortices decays. Process
I, a vortex collides with a barrier which has a number of like-sign vortices pinned to it.
Process II, a vortex collides with a barrier which has a number of opposite-sign vortices
pinned to it. Process III, a dipole pair collides with a barrier which has a number of
vortices pinned to it.

region where the phase of the condensate is ill-defined. Naively applying the plaquette

technique here leads to the detection of spurious vortices. However, it is also possible for

a net number of quanta of circulation to genuinely be present at this low density region:

we define this number of quanta as the winding number of the barrier Wk (for the kth

barrier). The winding number can also be interpreted as a number of pinned vortices.

Hence, when computing the vortex number we detect both the number of mobile vortices

Nv, using the plaquette technique and excluding the density-depleted regions, and the

total number of pinned vortices

W =
Nv∑
k=1

|Wk|, (8.17)

which is computed using a loop integral technique described in the next section.

The evolution of the vortex numbers for a system with NB = 25 barriers of varying
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Figure 8.4: A still, taken at time t = 14460τ , from the simulations of barriers with an
effective radius of 3ξ, (a) and (c), and simulations of barriers with an effective radius of
7ξ, (b) and (d). In panels (a) and (b), the density of the wavefunction is shown, while
different markers indicate the winding numberW of a barrier, and the position of a vortex
or anti-vortex. The phase of the wavefunction is shown in panels (c) and (d).

effective radii is shown in Fig. 8.3 (a)–(d). In Fig. 8.3(a) and (c) we plot only the number

of mobile vortices Nv. In Fig. 8.3(b) and (d) we plot the total number of vortices (mobile

and pinned), Nv + W . For the narrowest barriers we consider, the vortex decay rate

appears to follow a t−1.1 power law for effective barrier radii of ξ, and a t−1.2 power

law for effective barrier radii of 3ξ/2, as can be seen in panel (a). In a system where

the vortex number only decays via vortex-antivortex annihilations, Eqn. (8.15) predicts

that Nv ∝ t−1. The fact that the observed power laws are relatively close to t−1 for the

narrowest barriers is indicative of the fact that vortex decay is a two-vortex process in this

system. For barriers which are larger than the typical size of a vortex core (i.e., have an

effective width which is greater than a few healing lengths), the vortex number appears

to decay exponentially, as can be seen in panel (c). This is consistent with a solution

to Eqn. (8.15) where a one-vortex mechanism is dominant, i.e., Nv ∝ exp (−Γ1t). This

suggests that for wider barriers, at late times in the simulation, vortices are colliding with

a barrier more often than they are colliding and annihilating with a vortex of the opposite

sign. We discuss the effects of vortices colliding with barriers in the following section.
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8.2.3 Pinning to Barriers

As well as measuring the rate at which the number of vortices decay, we have also measured

the number of vortices which become pinned to the barriers. The pinning and un-pinning

of superfluid vortices is an important physical process for understanding the mechanism

of neutron star glitches [356–360], and is also of interest in systems with macroscopic

container defects [361–363], as well as spin-down experiments with helium [364, 365], and

laboratory BECs [366]. The microscopic process by which a vortex becomes pinned to

a density depleted region has recently been studied by Ref. [192]. For systems where

impurities exist, it is energetically favourable for a vortex to be contained within the

zero-density region, as there is no cost in energy to create a vortex core [367].

As described above, we define pinned vortices in terms of the net quanta of circulation

around a barrier, which is well defined as the branch cut representing a discontinuity

in the phase extends into the non-zero density region of the condensate (i.e., it is not

a spurious vortex caused by the phase not being well defined in the zero density region

at the centre of the barrier). For each barrier in a given potential, we can measure the

winding numberWk by integrating around a loop containing the barrier (see Appendix C

for details of the numerical method). Examples of the phase of a barrier with no pinned

vortices, one pinned vortex, and two pinned vortices are shown in Fig. 8.5 panels (i), (j)

and (k). Also shown is the approximate location of the radius of the circular “exclusion

zone” which we choose when counting the number of mobile vortices. A slightly larger

circular loop is used to measure the winding number. It should be noted that in any one

trajectory the time-dependent values of the numbers of mobile and pinned vortices may

display fluctuations in time that depend on the precise choice of radii for these circles,

especially when two or more barriers are close together. While we were unable to find

choices that eliminate these fluctuations in any one trajectory, we find the averaged results

are relatively insensitive to the choice of radii.

At early times, the system is in a highly non-equilibrium state, and many vortices

are periodically shed by the barriers. However, by t ' 103τ , shedding from each of the

barriers has almost completely stopped, and the winding number of each barrier is steady.

This can be seen in Fig. 8.3 panel (e). For larger barriers, the number of mobile vortices

in the system decays as Nv ∝ exp (−Γ1t), suggesting that the vortices are annihilating

with the barriers. From our observations of the simulations, we suggest that there are 3

processes taking place here. Process I: a vortex collides with a barrier which has a number

of vortices with the same sign pinned to it. Here the number of mobile vortices decays,

Nv → Nv − 1, while the number of pinned vortices increases, W →W + 1. Process II: a

vortex collides with a barrier which has a number of vortices with the opposite sign pinned

to it. Here the number of mobile vortices decays, Nv → Nv−1, but the number of pinned

vortices also decays since the mobile vortex annihilates with one of the pinned vortices,

W → W − 1. Process III: a dipole pair collides with a barrier which has a number of

vortices pinned to it. Here, the number of mobile vortices decreases by two, Nv → Nv−2,
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however the number of pinned vortices remains the same, since one of the dipole pair will

annihilate with the vortices of opposite sign in the barrier, while the other vortex in the

dipole pair will remain and will become pinned to the barrier, W →W . As, on average,

each barrier sheds an equal number of vortices and anti-vortices, Processes I and II take

place with approximately the same frequency, conserving the pinning numberW . Process

III, which also conserves the winding number, happens far less frequently. However, this

process may perhaps explain the slight modifications to the exponential decay which we

see in Fig. 8.3. We assume that collisions between three or more vortices and a barrier

are so rare as to be negligible.

The probability of observing a given winding number can be seen in the histograms

in Fig. 8.5, where the data is taken from 104τ ≤ t ≤ 2 × 104τ . As we can see, for

narrow barriers vortex pinning is not an important feature. However, for barriers which

are significantly larger than a vortex core, a significant number of the barriers do have

a vortex or anti-vortex pinned to them (Wk = ±1), and the largest barriers which we

consider support the pinning of multiple vortices (|Wk| > 1). Examples of this behaviour

can be seen in Fig. 8.4.

It can be seen in Fig. 8.3 that the rate at which the number of mobile vortices decays

becomes quicker as the effective radius is increased past 2ξ, and is at its fastest for

barriers which have an effective radius of ≈ 5ξ. This may be attributed to the fact that

for barriers with an effective radius greater than 2ξ we have observed that is is more likely

for a barrier to support the pinning of vortices; this provides a mechanism to lose mobile

vortices via Process I, above. For barriers which have a larger effective radius than 5ξ, we

have observed that it is possible to have multiple vortices pinned to a barrier. Multiple

pinning creates a stronger velocity field around the barrier than single pinning does; this

could explain why the rate at which the number of mobile vortices decays slows slightly

as the effective barrier radius increases above 5ξ.

8.3 Conclusion

In this part we have studied the effect of dragging a disordered point-like potential through

a superfluid which is initially in the ground state. We have seen how the critical velocity

of two point like barriers depends on the relative distance and angle between the barriers.

We have then determined the critical velocity for a system which has up to 50 point like

barriers at randomized locations, and shown that the critical velocity of such a system can

be mapped on to the two-barrier case by considering the separation and angle with respect

to the flow of the closest nearest-neighbour pair of barriers in the disorder potential.

Using PGPE simulations, we investigated the evolution of a system in which an initial

superflow, moving at or above the critical velocity, is disturbed by a stationary point-like

disorder potential. This strongly non-equilibrium initial condition causes the nucleation

of vortices and depletion of the condensate and superfluid fractions. We observe that
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Figure 8.5: Normalized histogram of the winding number, W , for barriers with effective
radius (a) 1ξ, (b) 3ξ/2, (c) 2ξ, (d) 3ξ, (e) 4ξ, (f) 5ξ, (g) 6ξ and (h) 7ξ. Right: examples
the phase of the wavefunction, Arg (Ψ), around a barrier with (i) no pinning, W = 0, (j)
one pinned vortex, W = +1, and (k) two pinned vortices, W = +2; the black circle is
approximately the boundary of the zero-density region of the barrier. A slightly larger
circular loop is used to compute the integral required to calculate W .

the reaction of the fluid is to accelerate to a final velocity closer to the obstacle velocity.

This suppresses the nucleation of further vortices, and the fluid re-condenses and some

superfluidity is restored.

We extended our parameter space to consider the effect of larger barriers in the system,

and investigated the way in which this affects the decay of the number of vortices in the

system. It is clear that the presence of randomly placed barriers that have an effective

width which is larger than the characteristic size of a vortex core, modifies the form of the

vortex number decay from the behaviour identified in previous theoretical works without

a disordered potential. Within the limits of our numerical analysis, it appears as though

the vortex decay rate no longer follows a t−1 power-law scaling which is indicative of

vortex-antivortex annihilations, but rather the vortices collide with the barriers which

make up the potential, causing an exponential decay. This one-vortex decay process is

confirmed with our observations of the simulations. Finally, we observe that for these

larger barriers vortex pinning becomes a relevant phenomenon, with the largest barriers

which we consider supporting the pinning of multiple vortices.

With an appropriate trapping geometry, it may be possible to experimentally study

a system equivalent to the one studied here in which the disordered potential arrests a

superflow.
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Part IV

Point Vortex Models
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Chapter 9

The Point Vortex Model

In this part we consider the dynamics of a system of vortices using the Point Vortex

Model, rather than the PGPE. As the name implies, this model considers the vortices as

a series of points, whose dynamics are governed by a set of coupled, first order, ordinary

differential equations. We begin by introducing the standard Point Vortex Model, and

consider some of the ways in which it may be extended. We end this chapter by deriving

a Point Vortex Model which takes into account fluctuations in the density of the fluid in

which the vortices live. In Chapter 10 we apply this updated model to a system with a

continuously varying disordered potential.

9.1 Introduction to the Point Vortex Model

The concept of using a point vortex model to describe the dynamics of an ideal 2D fluid

containing vortices (or a 3D fluid which contains straight, parallel, vortex filament tubes)

was originally introduced by Helmholtz [368] and Kirchoff [369]. In classical fluids, this

is a highly idealized model, since a vortex may have an arbitrary sized core, and the

circulation is continuous. Superfluids, on the other hand, are immediately more amenable

to a point vortex model, as the size of the vortex core is fixed, and the circulation is

quantized [370, 371], as seen in Chapter 3. The key idea of point vortex model is that,

in the absence of other forces, a vortex will move with the local velocity field, which is

imposed by other nearby vortices. In a 3D superfluid, the motion of a vortex line is due

to velocity contributions both from other vortex lines, and also (if the vortex line is not

straight) from other parts of the same vortex line [224]. In a 2D superfluid, the effects of

vortex bending are “frozen-out” [98], and so the dynamics of the pure point vortex model

depend only on the relative positions and charges of the vortices [230], and not on other

parts of the vortex line.

The point vortex model has been sucessfully used to study a diverse range of physics

in superfluids [57, 88, 89, 91, 93, 96, 339, 371–386], including vortex dynamics [372, 373,

382, 385, 387] and clustering [88, 96], the prediction of negative temperature states [88,

388], the direct enstrophy cascade [91], and the inverse energy cascade [88, 389]. The

107
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advantage of the point vortex model is that it is a conceptually simple model which

correctly describes the dynamics of the vortices in a fluid [390]. It has been shown that,

for a system of well separated vortices, the point vortex model for a superfluid [230] is in

good agreement with GPE simulations [88, 89, 339, 374, 382, 386, 391] and experimental

observations [57, 375, 379, 383, 391]. The point vortex model is also numerically cheaper

to implement than the GPE, since at any one time one only needs to compute the position

and velocities of Nv vortices, rather than compute mean-field dynamics on a Nx×Ny grid1.

Unfortunately, there are some processes which must be artificially added to the point

vortex model to make it physically realistic. The primary ingredient which must be added

is the annihilation of vortex anti-vortex pairs which takes place in quantum turbulence [93,

179, 232, 389]. This can be achieved “by hand” in the point vortex model, by removing

pairs of vortices of opposite sign when they are below a threshold distance of each other;

typically this distance is one or two healing lengths [88, 89, 392]. A related phenomena, is

the presence of damping in the system, which is due to the friction between the superfluid

and normal fluid components [57, 379]. A dissipative term can be rigorously added to the

point vortex model, by addition of a Peach-Koehler term [231, 393].

Given recent experimental advances in controlling the trapping geometry of a con-

densate [25], it is necessary to consider the role of the geometry of the system on vortex

dynamics. If the condensate is of finite size, the boundary of a condensate must play a role

in modifying the dynamics of a vortex. In classical fluids, the method of image vortices

to account for a hard boundary is well established [69]. However, within the context of

the point vortex model, a debate exists on the necessity of imposing image vortices in

condensates which have a soft boundary [197, 339, 373, 394–397]. In order to avoid such

ambiguities, the work on the point vortex model in this thesis will be in a regime where

there are no regions where the fluid density vanishes, and therefore the system has no

boundary.

Aside from boundaries, the point vortex model introduced by Fetter [230] is only

strictly valid in a uniform system. It has been predicted and observed that variations

in the background density of the fluid will affect the motion of a vortex [244, 375–377,

394, 398–401]. There has been some progress in simulating point vortex models where

the density of the fluid varies, such as the work by Groszek et al. [339] on few vortices

in a trapped system. Studies of a system with a large number of vortices on a varying

background density using the point vortex model in are in their infancy, however.

The remainder of this part is structured as follows. In the following sections we

introduce the vanilla point vortex model, as well as recent advances in adding dissipation

and compressible effects to this equation. We conclude this chapter by introducing an

1Typically, point vortex simulations initially have fewer than Nv(0) = 215 vortices [91], a number which
decreases as simulations progress and vortices are removed after annihilation. In order to numerically
simulate the Povint Vortex Model, one must calculate the distance between each of the vortices, Eqn. (9.3);
with symmetries, rjk is a Nv(Nv − 1)/2 matrix. On the other hand, the complexity of computing the
Fast Fourier Transform (an operation which can be used to calculate the derivative terms in the GPE)
scales like NxNy log (NxNy).
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outline of the derivation of a point vortex model which correctly accounts for dissipation

and fluctuations in the background density of the fluid. A full derivation can be found in

Appendix. D. In Chapter 10 we present preliminary results on the dynamics of vortices

both in a simple non-uniform potential, and then in a continuously varying disorder

potential. We end this part with a discussion of future avenues of research.

9.2 The Point Vortex Equation of Motion

The equation of motion found by Fetter [230] is for the position rj of the j-th vortex in

the system. This position depends on the gradient of the phase field which is due to the

other vortices in the system. For a system containing Nv vortices, the phase field of the

j-th vortex is given by

Sj(x, y) =
Nv∑
k=1
k 6=j

nk arctan

(
y − yk
x− xk

)
, (9.1)

where the vortices may be described by a coordinate (xk, yk) and a charge nk. Recalling

that the superfluid velocity is v = (~/m)∇S, the gradient of this phase field gives the

velocity of the j-th vortex [230],
d

dt
rj = vj, (9.2)

where

vj =
Nv∑
k=1
k 6=j

nk
r2
jk

(
−yjk
xjk

)
, (9.3)

the distances xjk = xj − xk, yjk = yj − yk, and r2
jk = x2

jk + y2
jk, with nj = ±1 the sign of

the jth vortex. The j = k term is omitted from the sum, as the motion of a given vortex

depends only on the velocity field of other vortices. We will refer to this equation as the

“pure” Point Vortex Model, as it simply treats each of the vortices as a point (based on

the vortex’s position) and states that the vortex moves with the local superfluid velocity

with no other corrections.

It should be noted that, in an unbounded system, the problem can also be formulated

as a Hamiltonian system [402]

HPV = −
Nv∑
j=1

Nv∑
k=1
k 6=j

njnk ln |rj − rk|, (9.4)

where the vortex dynamics are governed by

dxj
dt

=
∂HPV

∂yj
,

dyj
dt

= −∂HPV

∂xj
. (9.5)
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In systems where boundaries are present, it is necessary to replace to logarithmic term

in Eqn. (9.4) with appropriate Green’s functions which depend on the geometry of the

system [371, 402]. It can be seen in Eqn. (9.5) that the variables x and y, which represent

the coordinates of the vortices, are canonically conjugate; we also note that Eqn. (9.4)

does not describe a typical Hamiltonian system, since the conjugate variables are the x

and y positions rather than position and momentum. In addition to the Hamiltonian, the

vortex momentum

P =
Nv∑
j=1

nj (yjx̂− xjŷ) (9.6)

must be conserved due to translational symmetry, and the angular momentum,

PL =
Nv∑
j=1

nj
(
x2
j + y2

j

)
, (9.7)

is conserved in an open domain due to rotational symmetry.

In a periodic square domain of size L× L is it possible to write [403]

vj =
πc

L

Nv∑
k=1
k 6=j

nk

[
−f (ỹjk, x̃jk)

f (x̃jk, ỹjk)

]
, (9.8)

where

f(x, y) =
1

2

∞∑
p=−∞

sin(x)

cosh(y − 2πp)− cos(x)
, (9.9)

c is the speed of sound of the fluid, and the re-scaled coordinates are given by (x̃jk, ỹjk) =

2π (xjk, yjk) /Lξ, [403] . More generally, an expression can be derived for point vortices

within an arbitrarily sized periodic parallelogram [404], although we will not consider such

a set up within this thesis.

9.2.1 Adding Dissipation

It is possible to add dissipation to the system, by means of the phenomenological damping

parameter γ. The equation becomes

d

dt
rj = vj − γnj ẑ× vj, (9.10)

where the second term is a perpendicular Peach–Koelher term [393], which typically de-

scribes the force which acts upon a line element in a stress field. In the case of Eqn. (9.10),

the line element is the vortex filament (point vortex in 2D), and the stress field is the

velocity vield induced by the other votices. This term was introduced by Kawasaki [405].

Typically, damping is added to the system as a uniform parameter (see, for example,

[379]) in a similar sense to the addition of damping to the (S)(P)GPE, where γ parama-

terises the rate at which the system relaxes [144]. Some models, on the other hand, add
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damping as a spatially dependent function in order to mimic the sound waves which are

generated when two vortices annihilate in a mean-field simulation [91]. In the dissipative

point vortex model, the effect of damping depends on the mutual sign of the interacting

vortices, as can be seen by the second term in Eqn. (9.10). For a constant value of γ, the

result of adding damping is to shorten the distance between oppositely signed vortex pairs,

or lengthen the distance between like-sign vortex pairs over time (see Appendix D.3).

9.2.2 Adding Compressible Effects

Some progress has been made in modifying a simple point vortex model to be able to

consider the role of sound and thermal fluctuations. This model, proposed by Reeves et

al., [406], combines a dissipative point vortex model with a noise term, thus forming a

Langevin equation. The dynamics are modeled as

drj = (vj − γnj ẑ× vj) dt+
√

2η dWj, (9.11)

where η is the vortex diffusion rate, and the noise term dWj components are independent

Gaussian random variables with 〈
dWα

j dW
β
k

〉
= δjkδαβ (9.12)

with all other correlations vanishing (much like the approach of the SPGPE [133]).

This model represents a significant stepping stone in correcting for sound in the point

vortex model at the single vortex level. Unfortunately, however, Reeves et al. [406] found

that the value of η is highly sensitive to the geometry of the system, and the means by

which vortices are injected into the system.

9.3 Taking Account of Background Fluctuations

Previous works [230, 239, 240] have derived equations of motion for a system of vortices,

assuming that the vortices are dilute within the system. This assumption, equivalent to

the assumption that the average inter-vortex distance is large compared to the healing

length of the system, means that the equation of motion does not take into account

variations in the background density of the field. In a dilute system of vortices in a

uniform BEC it is reasonable to assume that the effect of density gradients is negligible,

it can be shown that in a trapped system the trapping potential distorts the position of

the vortex [244], and so the vortex dynamics will be modified by gradients in the density.

In the remainder of this chapter, we will discuss a dissipative point vortex model which

takes into account the effects of the background density of the fluid [231]. This equation

of motion is applicable to a non-relativistic dissipative system, and can be derived from

a Ginzburg-Landau equation with complex coefficients. The derivation is based on that



112 CHAPTER 9. THE POINT VORTEX MODEL

of Törnkvist and Schröder, Ref. [231], and a full derivation of the model can be found in

Appendix D.

Consider a general Ginzburg-Landau equation,

dΨ

dt
= P (Ψ,Ψ∗) Ψ + b∇2Ψ, (9.13)

where Ψ is a complex field, the function P is given by

P (Ψ,Ψ∗) = ς − a|Ψ|2, (9.14)

and a, b, ς ∈ C. The complex Ginzburg-Landau equation has a number of special cases; if

a, b, ς are purely imaginary, then we recover the non-linear Schrödinger equation, which

in this context may also be called the Ginzburg-Pitaevskii-Gross equation. This equation

is conservative, and may be derived from a Lagrangian formalism [407]. In general, the

complex Ginzburg-Landau equation is a dissipative system from which the damped GPE

may be recovered on setting a = g(γ + i)/~, b = ~(γ + i)/(2m) and ς = µ(γ + i)/~, by

comparison with Eqn. (2.38).

We adopt a coordinate system for a one-dimensional string, which is the vortex filament

[231]. At any time t, the position of the filament of the vortex is given by X(s, t),

where s parameterises the arclength of the filament. In differential geometry, the Frenet-

Serret formulas [408] describe the dynamical properties of a particle moving along a

smooth, continuous curve, as well as intrinsic properties of the curve itself. From here,

an orthonormal coordinate system may be derived from the Frenet frame which describes

any position r in the neighbourhood of the string as

r = X(s, t) + r cosϕN (s, t) + r sinϕB(s, t), (9.15)

where N is vector normal to X, the binormal vector B can be found by taking the vector

product of the tangent and normal vectors, and r cosϕ, r sinϕ are polar coordinates

introduced in this local region. In this coordinate system, it is possible to write the

Laplacian term of Eqn. (9.13) as

∇2 =
∂2

∂r2
+

1

r

∂

∂r
+

1

r2

∂2

∂ϕ2
− κ

1− κr cosϕ

(
cosϕ

∂

∂r
− κ sinϕ

∂

∂ϕ

)
+

[
1

1− κr cosϕ

(
∂

∂s
− τ ∂

∂ϕ

)]2

(9.16)

where κ is is the curvature of the vortex filament, and τ is the torsion of the vortex

filament (a measure of how quickly the curve is twisting out of the plane).

Suppose that we write the complex field in Eqn. (9.13) as

Ψ = |Ψ| exp (iS) , (9.17)
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Figure 9.1: A schematic of the Törnkvist and Schröder model, applied to a vortex dipole
(n1 = 1, n2 = −1) in an inhomogeneous background. The surface represents a sketch of
the background fluid density for a system that contains two vortices (shown as the two
density minima). The gray lines show the contours of the trapping potential. The arrows
represent each term in Eqn. (9.29); blue, the point vortex velocity, T1 = vj; red, the
damped term from the point vortex model, T2 = −γnj × vj; purple, the perpendicular
Peach-Koehler term, T3 = −nj ×∇ lnw|rj ; green, the background dissipative term T4 =
−γ∇ lnw|rj . The length of each arrow is proportional to the modulus of each of the terms.

by virtue of a Madelung transform. The multivalued nature of the phase of a vortex will

cause problems with the continuity and differentiability of |Ψ| and S as r → 0. To counter

this, we split the modulus and phase of Ψ as follows: let

|Ψ| = R(r, ϕ) w(r, ϕ), (9.18)

S = χ(r, ϕ) + θ(r, ϕ) (9.19)

where lnR depends on the filament position and contains any contribution to the modulus

which is non-differentiable at r = 0. Similarly, we absorb into χ any part of the phase

field which is multivalued at any point, or non-differentiable at r = 0. We note that is

important to allow the amplitude, |Ψ| of the complex field to vary, as this will include the

contributions from the background fluid density in our model. Since R and χ only occur

in the combinations described in Eqns. (9.18) and (9.19), they are non-unique which in

3D provides a gauge freedom. In 2D, we set

R = r|n|, χ = nϕ, (9.20)

and we note that the curvature and torsion of the vortex filaments vanish, so κ→ 0 and

τ → 0. Physically this is equivalent to assuming that the vortex filaments are straight

and parallel [98], and taking a cut in the xy plane.

The result of Eqn. (9.20) and Eqn. (9.16) is that we can write the real and imaginary
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parts of the complex Ginzburg-Landau equation as

d

dt
(lnR + lnw) = Re [P (Ψ,Ψ∗)] + bRQ1 − bIQ2, (9.21)

d

dt
(θ + χ) = Im [P (Ψ,Ψ∗)] + bRQ1 + bIQ2, (9.22)

where the coefficient b has been divided into real, Re(b) = bR, and imaginary, Im(b) = bI ,

parts, and

Q1 = ∇2 lnw +
2|n|
r
r̂ · ∇ lnw − 2n

r
ϕ̂ · ∇θ + (∇ lnw)2 − (∇θ)2 , (9.23)

Q2 = ∇2θ +
2|n|
r
r̂ · ∇θ +

2n

r
ϕ̂ · ∇ lnw + 2∇ lnw · ∇θ. (9.24)

It is possible to link the time derivative in the lab-frame to the time derivative in the

moving reference frame of the local segment of the vortex filament by

d

dt
=

∂

∂t
− dX

dt
· ∇. (9.25)

Applying this to Eqns. (9.23) and (9.24) leads to two more coupled equations which

describe the evolution of the four variables R, w, θ, and χ. In each of these equations

[as one can see in Eqns. (9.23) and (9.24)], there are terms which are proportional to

r−1, which will lead to singularities as r → 0. We must, therefore, derive regularity

conditions for these equations, so that the singularities cancel term by term. The form of

the function P (Ψ,Ψ∗) does not enter into the remainder of the derivation, as it is globally

differentiable. Recall that lnw and θ are continuous and differentiable everywhere; the

regularity conditions are

0 =
dX

dt
· r̂ + 2bR

[
r̂ · ∇ lnw − n

|n|ϕ̂ · ∇θ
]
− 2bI

[
r̂ · ∇θ +

n

|n|ϕ̂ · ∇ lnw

]
,

(9.26)

0 =
dX

dt
· ϕ̂+ 2bR

[
n

|n| r̂ · ∇θ + ϕ̂ · ∇ lnw−
]

+ 2bI

[
n

|n| r̂ · ∇ lnw − ϕ̂ · ∇θ
]
.

(9.27)

We now have equations for the two perpendicular components of dX/dt. We can combine

these into one equation, using the fact that r̂ × ϕ̂ = ẑ. Since the tangential velocity

is devoid of physical meaning, it is possible to set ẑ·dX/dt = 0, by means of a time

dependent reparameterization [231]; the resulting equation for the velocity of the vortex

filament is therefore

dX

dt
= 2bI∇θ − 2bR

n

|n| ẑ ×∇θ − 2bI
n

|n| ẑ ×∇ lnw − 2bR∇ lnw. (9.28)

It is now possible to write down an equation of motion for a dissipative point vortex
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model which takes into account the background density fluctuations of the fluid in which

the vortices exist. By comparison with the dissipative GPE, Eqn. (2.38), we have the

constants bR = γ~/2m and bI = ~/2m (or, in adimensional form, bR = γ/2 and bI = 1/2).

For a system which has only unit vortices, nj = ±1, the non-dimensional equation of

motion of the position rj of the j-th defect is

d

dt
rj = vj − γnjẑ × vj − njẑ ×∇ lnw

∣∣
rj
− γ∇ lnw

∣∣
rj
, (9.29)

where vj is given by Eqn. (9.3).

This is a modified form Eqn. (9.10). The third term has the same formulation as the

second term: a perpendicular Peach-Koehler term. In this case, the term depends on

the natural logarithm of the background density, and so this term generates a force on

the vortex filament which is due to the gradient of the density of the superfluid. The

final term is proportional to the gradient of the background fluid; the strength of this

term depends on the dissipation of the system. A sketch of how Eqn. (9.29) applies to a

vortex dipole in an inhomogeneous background can be found in Fig. 9.1. The advantages

of solving Eqn. (9.29), rather than the full GPE, are similar to those of the vanilla point

vortex model: it is numerically cheaper to implement, and the coordinates of the vortices

are readily available. In addition, the Törnkvist and Schröder model, Eqn. (9.29), is an

exact equation for a system of vortices where dissipation is present, and the velocity of

the vortices depends on local gradients in the background density of the fluid.



Chapter 10

Vortex Dynamics in the Presence of

Disorder

In this chapter we present some preliminary results on vortex dynamics, found using

Eqn. (9.29). The chapter is in two halves, the first half dealing with the motion of a few

vortices moving in a simple non-uniform 2D condensate, and the latter half is dedicated

to investigating the decay of many vortices which are in a continuously varying disordered

potential with some scale cut-off.

10.1 A Simple non-Uniform Potential

We begin by examining the effects of Eqn. (9.29) by looking at the dynamics of a single

vortex-antivortex pair on a varying background. This provides a useful prototype on

which to test our numerical procedure. In the simplest case, we do this by imposing a

slowly varying periodic potential given by

Vext(r) = V0 sin

(
2πx

Lx

)
, (10.1)

on a periodic cell which has dimensions Lx × Ly. In order to determine the background

density, w, of the fluid, we use the Thomas-Fermi approximation. This means that the

background density is given by

w(r) =

√
V0

g

[
µ

V0

− sin

(
2πx

Lx

)]1/2

. (10.2)

We substitute this into Eqn. (9.29) and numerically evolve the equations of motion using

a 4th order Runge-Kutta time stepping scheme with a fixed step size of δt = 0.1. We

have ensured that this time step is small enough by comparing the vortex dynamics for

a system where the time step is one tenth of the size. We impose a cut-off distance of 1

healing length, so that if a vortex anti-vortex pair is separated by less than this distance

they are deemed to have annihilated and are removed from the system. Note that, in

116
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the simulations presented in Fig. 10.1, we directly apply Eqn. (9.29) in a rectangular

(Lx 6= Ly) domain, with the velocity vj as it appears in Eqn. (9.3). This is a first order

approximation, as it does not take into account the image vortices which are due to the

periodic boundary conditions; for a square domain this is corrected by Eqn. (9.8), which

we will use in the next section. We do not expect that this will make a qualitative

difference to the dynamics in Fig. 10.1.

The evolution of a vortex-antivortex pair on a non-uniform background is plotted in

Fig. 10.1 column (a). It is evident that the strength of the background potential (and

thus the variation in the density of the background fluid) has an effect on the dynamics

of the vortices. As the vortices enter a denser region of fluid, indicated by the darker

shaded region in Fig. 10.1, the dipole length r12(t) = |r1(t)− r2(t)| decreases, and so the

velocity of the dipole pair increases. As the vortices enter a region where the density of

the fluid is depleted, indicated by the lighter shaded region of Fig. 10.1, the dipole length

increases and the velocity of the dipole pair is reduced. By making the potential function

strong enough, it is possible to have steep enough density gradients that the dipole length

becomes shorter than the cut-off distance for annihilations, and the dipole is removed

from the system. Note that to avoid the issue of image vortices at a boundary, we have

chosen µ/V0 > 1 so that there isn’t a region where the density of the background fluid

vanishes. In Fig. 10.1 column (b) we vary the strength of the dissipation γ in the system.

As expected, the distance between the vortices in the dipole pair decreases according to

the strength of γ. This distance evolves as

[r12(t)]2 = [r12(0)]2 − 4γt (10.3)

where r1 and r2 are the coordinates of the dipole pair.
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Figure 10.1: The dynamics of a vortex (blue) anti-vortex (red) pair, governed by the
dissipative point vortex model with background fluctuations. In column (a) the non-
uniform background potential given in Eqn. (10.1) is imposed; the background colour
gives the relative height of the potential, Vext/V0; panel (a)(i) has µ/V0 = 10.0, panel
(a)(ii) has µ/V0 = 5.0, panel (a)(iii) has µ/V0 = 2.5, and panel (a)(iv) has µ/V0 = 1.25.
In column (b) the background is uniform while the value of dissipation varies; panel (b)(i)
has γ = 10−3, panel (b)(ii) has γ = 10−2, panel (b)(iii) has γ = 10−1, panel (b)(iv) has
γ = 100. Markers are placed at equal time steps.
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Figure 10.2: The decay of Nv vortices in a homogeneous background. Initially there are
Nv = 212 vortices, with an equal number of positive and negative unit charges, randomly
placed within a 256ξ × 256ξ periodic cell, where the value of damping is γ = 0.01. Light
blue lines show the trajectory of individual simulations, while the solid red line shows the
ensemble average. The line Nv ∼ t−1 is added as a guide to the eye.

10.2 A Continuously Varying Disordered Potential

We are primarily interested in determining the effect which a varying density of the back-

ground fluid has on the rate at which vortices decay. As a benchmark, we evolved a system

which initially has Nv = 212 vortices all within a spatially homogeneous, w =constant,

fluid. In order to speed up the dynamics of the vortex coarsening, a small amount of

damping is added to the system. The results of these simulations are shown in Fig. 10.2.

As there are no boundaries in this simulation, we would expect that the vortex decay rate

is given by
dNv

dt
= −Γ2N

2
v , (10.4)

as in Ref. [232], and indeed this is the result which we recover.

In Part. III we considered a point-like disordered potential which consisted of NB

Gaussian peaks, randomly distributed in the domain, which is otherwise uniform. By

tuning the height and width of these peaks, we were able to form barriers in the flow,

which had a regular (effectively cylindrical) cross section. In this part, however, we

consider a potential which is continuously varying throughout the domain. In order to

efficiently implement Eqn. (9.29), we choose a potential which has a relatively simple

analytic form,

Vext(r) =
∑
k∈K

Ak cos

(
2π

L
k · r + ϕk

)
, (10.5)



120 CHAPTER 10. VORTEX DYNAMICS IN THE PRESENCE OF DISORDER

where

K =
{
k = (kx, ky) : k2

min ≤ k2
x + k2

y ≤ k2
max

}
, (10.6)

and the random variables Ak and ϕk are sampled from uniform U [0, 1] and U [0, 2π)

distributions respectively. The set of modes, K represents an annulus in k space, and by

controlling the parameters kmin and kmax, we are able to control the deviations of Vext

from a uniform potential: a low kmax represents a slowly varying potential landscape,

while increasing kmax leads to sharp peaks in the potential. A third parameter to control

is the Root Mean Square (RMS) value of the potential, VRMS. The RMS value of the trap

is related to the maximum value of the trap (see Appendix. D.4 for details), and is a good

indicator of the strength of the potential.

In order to calculate the terms in Eqn. (9.29) which depend on the gradient of the

background density, we approximate the background density using the Thomas-Fermi

density profile. For the remainder of this section we write any variables in dimensionless

form, where the chemical potential µ and the interaction strength g are both set to one.

We also ensure that the coefficients Ak are chosen so that the maximum of the potential

is less than one. This ensures that there are no regions in the cell where the background

density vanishes, removing the need to worry about image vortices, or how to deal with

vortex pinning. The resulting expression for the background density is, in dimensionless

form,

w =
√

1− Vext(r). (10.7)

To ensure that this is a valid approximation to the background density, in Fig. 10.3 we

compare the Thomas-Fermi density profile given in Eqn. (10.7) to the density ground

state which is found by numerically evolving the damped GPE, Eqn. (2.38). We find that

when the ratio kmax/L is small, there is a good agreement between the Thomas-Fermi

approximation and the exact state. As the ratio increases, however, the discrepancy

between the Thomas-Fermi profile and the numerically obtained density profile grows;

this is due to the fact that the derivatives of the wavefunction become more significant,

meaning that the Thomas-Fermi approximation becomes weaker.

In the remainder of this section we will work in the region of (kmax, VRMS) parameter

space where the Thomas-Fermi profile, Eqn. (10.7), is a good approximation of background

density, as can be seen in Fig. 10.3. This has the advantage that there is a simple analytical

form for the gradient of the densities,

∇ lnw =
1

2

[
1−

∑
k∈K

Ak cos

(
2π

L
k · r + ϕk

)]−1∑
k∈K

Ak k sin

(
2π

L
k · r + ϕk

)
. (10.8)

We note that µ/g does not enter Eqn. (10.8) since w invariant to scaling by a constant,

Eqn. (9.18). As in the previous section, we substitute this analytic expression for the

gradient into Eqn. (9.29) and numerically evolve the equations of motion using a 4th

order Runge-Kutta time stepping scheme with a fixed step size of δt = 0.1. We continue
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Figure 10.3: The absolute difference between the Thomas Fermi density profile, given
by Eqn. (10.7), and the numerically obtained ground state of a system subjected to a
continuously varying disordered potential, Eqn. (10.5), found by evolving the damped
GPE. In panel (a) kmax = 4, in panel (b) kmax = 16, and in panel (c) kmax = 32; in each
case kmin = 2, VRMS = 0.25, and L = 128ξ.

to use a small value of damping in order to speed up the dynamics of the system, while

imposing an cut-off length for vortex anti-vortex annihilation of one healing length.

The results of this simulation can be found in Fig. 10.4. For small values of kmax

and VRMS, there is no significant difference between the decay of the homogeneous sys-

tem, where Nv ∝ t−1, and the vortex decay rate observed in the system with a varying

background fluid density. It is clear, however, that as the values of kmax and VRMS are

increased, that there is a deviation between the vortex decay rate in the homogeneous

case and in the case where the background of the fluid varies. In the case of the strongest

and fastest varying disorder, panel (c)(v), the rate at which the vortex number decreases

is significantly different to the homogeneous case, indicating that if Nv ∼ t−β then β < 1.

As we discussed in Chapter 8, for randomly distributed vortices in a homogeneous sys-

tem the vortex decay rate is connected to the correlation length, Lc(t) of the system

via Nv(t) ∼ L−2
c . Since we observe that the vortex decay rate is slower than in a the

homogeneous case, the correlation length of the system is growing more slowly than in

the homogeneous case, indicating that the value of the dynamical critical exponent in

Eqn. (8.14) has changed [217]. This could be suggestive of vortex localisation [308], or

possibly the transition of the system to an exotic phase.

10.3 Outlook

In this part, we have introduced a dissipative point vortex model which correctly accounts

for fluctuations of the background density in the fluid. We have began by applying a

conceptually simple disordered potential to the system, and measuring the rate at which
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Figure 10.4: The decay of Nv point vortices in a system which has a varying background
density. Different columns correspond to different values of kmax; in column (a) kmax = 4,
in column (b) kmax = 8, and in column (c) kmax = 16. Different rows correspond to
different imposed values of VRMS; in row (i) VRMS = 0.05, in row (ii) VRMS = 0.10, in row
(iii) VRMS = 0.15, in row (iv) VRMS = 0.20, and in row (v) VRMS = 0.25. Light blue curves
show individual trajectories, while the dark blue curve shows the ensemble average. The
red dashed curve is the averaged decay of a homogeneous system of the same size, given
in Fig. 10.2.
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the vortex number decays. We have shown that, for strong enough disorder, there is a clear

divergence from the known results of vortex decay in a homogeneous system. Future work

on this model will involve calculating the mobility of remaining vortices in the system,

and investigating the possibility of finding a phenomenological rate equation which links

the parameters controlling the disorder potential (kmax, VRMS) and the number of vortices

in the system Nv(t). There is a fundamental link between the rate at which the number

of vortices decays and the coherence length of the system [217]; in this model, both of

these quantities differ from the homogeneous system, and so it is a potentially fruitful

to investigate whether the energy spectra or the enstrophy of the system are similarly

affected in the presence of disorder.

At present, the parameters which control the disordered potentials (kmax and VRMS)

used in our numerical simulations have been chosen so that background density of the

fluid is well described by the Thomas-Fermi approximation. In future work, in order

to extend the parameter space of disordered potentials available to us, we would look

to find the ground state of the system by numerically evolving the damped GPE, and

then calculating the background density terms in Eqn. (9.29) using interpolation. Even

for a large system, the computational time required to calibrate the model by evolving

the GPE to the system’s ground state before investigating the dynamics using the point

vortex model is shorter than simulating everyting using the GPE.

To further extend the parameter space of disordered potentials available, we could also

consider strongly disordered potentials, where there are zero density regions in the fluid.

In this regime, we would have to consider to need to add image vortices to our governing

equations, as well as considering the means by which we would add pinning to the model.

Such strongly disordered potentials may lead to vortex dynamics in exotic phases; at zero

temperature, a BEC that is subject to subject to a disorder stronger than a critical value

undergoes a quantum phase transition to an exotic “Bose glass” [308, 409]. It remains an

open question as to how the Bose glass phase is connected to the normal fluid phase [330,

335, 410]. Using the model which we have developed in this part, and by expanding the

parameter space available, it may be possible to rigorously address this question. In order

to present a comprehensive picture of the interplay between disorder, vortex dynamics

and phase transitions, it will also be necessary to compare the results of this model to a

sample of (S)PGPE simulations.

A final topic to explore would be to attempt to derive a hydrodynamic model from

Eqn. (9.29). This would be similar to the studies carried out by Refs. [381, 384, 411],

who have shown that a coarse-grained description of small patches of vortex distributions

behaves as an inviscid non-Eulerian fluid on scales which are much larger than the scale

of the patches. Such a model would enable the study of very large numbers of vortices,

over long time scales, in a 2D fluid with a varying background density.
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Chapter 11

Conclusions

11.1 Conclusions

This thesis has considered the vortex dynamics in a variety of 2D BEC systems, encom-

passing systems which are rotating at the centrifugal limit, as well as systems which are

subjected to disorder.

In Part I we introduced Bose Einstein Condensation as well as the Gross-Pitaevskii

Equation, which is a non-linear partial differential equation that has been successfully

used to model a condensed gas. We also provided a comprehensive introduction to the

projected Gross-Pitaevskii Equation, an extension to the ordinary GPE that simulates a

weakly interacting Bose gas at finite temperature. We ended this part with a theoretical

description of quantized vortices and their properties, as well as the means by which they

might be created in an experiment.

In Part II we studied a 2D Bose gas that is subjected to a harmonic trapping potential,

rotating at the centrifugal limit so that the effective trapping potential vanishes. This

allows us to probe the behaviour of the bulk of the system, as there are no boundaries or

edge effects.

We work in the Landau gauge, which is advantageous at the centrifugal limit since we

can write down quasi-periodic boundary conditions that allow us to consider a represen-

tative cell of the infinite system. We also present the analytic expression for the phase of

a Bose gas subjected to these boundary conditions; this allows us to prepare the system

with an initial configuration of Nv vortices placed within the cell (subject to symmetry

considerations).

It is possible to evolve the PGPE for this system by using a pseudo-spectral method,

using the eigenfunctions of the single particle Hamiltonian as basis functions. This has

the advantage in that the projection operator can be implemented exactly; the number

of basis functions which describe the wavefunction is controlled by the energy cut-off.

Despite the fact that there is no known quadrature rule for these basis functions, we show

that by suitable choice of the simulation parameters it is possible to make the resulting

error of the evolution negligible.
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By adding a dimensionless damping parameter to the PGPE, we were able to confirm

that the system relaxes to the expected ground state: for a cell with aspect ratio
√

3

this is a hexagonal lattice of vortices. Adding noise to the ground state increases the

contribution of higher energy levels, and hence affects the thermal properties of the state.

We evolved this perturbed ground state in the absence of damping and observed that the

vortex lattice “melts” for sufficiently large amounts of noise.

The absence of boundaries and edge effects of the infinite system provides an excellent

test-bed in which to study phase transitions in a rotating 2D system. After evolving a

perturbed ground state, we were able to measure the first-order correlation function of the

system; the nature of the decay of this function is a hallmark of the Berezinskii-Kosterlitz-

Thouless transition. We observed a clear transition from algebraic to exponential decay

as the amount of noise added to the ground state increases, suggesting that a transition

analogous to the BKT transition has taken place.

In Part III we investigated the dynamics of a 2D Bose gas which is forced to flow

through a point-like disordered potential. We begin by determining the critical velocity

for vortex nucleation as the flow passes a system of two point-like barriers, and see that

this velocity depends on both the relative separation of the barriers, and the angle between

the barriers and the direction of the flow. Having determined the critical velocity for a pair

of point-like barriers, we obtain the critical velocity for a system of NB point like barriers.

We find that the critical velocity of the system can be inferred from the positioning of the

closest two barriers: for relatively close barriers the critical velocity is bounded above by

the highest critical velocity of the two barrier test case for equivalent nearest-neighbour

separation, while for well separated barriers the critical velocity is bounded above by the

single barrier case.

Having carried out a detailed study of the critical velocities of point-like disorder

potentials, we moved to look at the resulting non-equilibrium dynamics of the system.

Initially forcing the fluid to flow through the potential faster than the critical velocity, we

observed that the reaction of the fluid was to be arrested by the barrier. This is due to

the non-equilibrium initial conditions causing a dip in the superfluid fraction.

Finally, we explored the behaviour of the system as the effective width of the barriers is

increased. Measuring the number of vortices in the system as the width varies, we observed

a significant departure from the vortex decay rate that we would expect. We also observed

that vortex pinning becomes more relevant as the size of the barriers increases, with the

largest barriers which we considered supporting the pinning of multiple vortices.

In Part IV we considered the application of a Point Vortex Model to a 2D system

with a continuously varying background potential. Unlike typical Point Vortex Models

which are unsuitable for studying disordered potentials as they neglect background density

gradients, we have simulated a Point Vortex Model which correctly accounts for these

fluctuations [231].

Initially we consider the motion of a dipole pair in a fluid with a non-uniform back-
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ground density. We observe that the dynamics of the dipole are altered by the background.

In fact, for strong enough variations in the background density, the dipole pair can be

forced to annihilate in the absence of damping.

Applying the model to a system which initially has a large number of vortices, we

confirm that in a uniform system the expected scaling of the vortex number is recovered.

We then move to consider the dynamics of a large number of vortices in a continuously

varying trapping potential. We achieve this by using a Thomas-Fermi profile to approx-

imate the background density of the fluid when the disorder is weak and slowly varying.

Such a system displays a clear departure from the expected scaling law as the disorder

strength increases, suggesting that this is an interesting area of research to pursue.

11.2 Future Work

Future research will consider two main avenues. Using the numerical method from Part II,

we have an excellent framework in which to study vortex dynamics and phase transitions of

Bose gases in a rotating system. Furthermore, based on the findings presented in Part III

and the methodology of Part IV, there is a wide scope to investigate vortex dynamics in

a system which is subject to disorder. In the remaining sub-sections we propose some of

the initial work to be carried out.

11.2.1 A BKT-like Transition in a Rotating BEC

The possibility of a phase transition in a 2D rotating BEC which is analogous to the

BKT transition was probed in Chapter 6, and this remains an exciting future direction

of research.

The work presented in Chapter 6 takes place in a 64ξ × 64ξ/
√

3 cell, which means

that the range in which the first order correlation function can be reliably calculated

is 0 < r < 32ξ/
√

3. In order to ensure that a comprehensive picture of the BKT-like

transition is presented, similar statistics should be calculated for larger systems. As

with any PGPE simulation, it will also be necessary that we perform these simulations

with a different number of energy levels included in the c-field region, to ensure that our

calculations are insensitive to our choice of cut-off.

In order to explore the vortex pair unbinding which is a characteristic of the BKT

transition, further work is needed to analyse the spatial distribution of vortices. To fully

understand the effect that rotation has on the BKT transition temperature, we must find

a correspondence between the amount of noise which is added to the ground state, and the

temperature and superfluid fraction of the system. Such a calculation is highly non-trivial

as our system is in a non-inertial frame and in the Landau gauge. Relating these physical

observables, however, will undoubtedly unearth rich results in condensed matter physics.
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11.2.2 Flow through disordered potentials

Adding disorder to a system vastly increases the parameter space which may be explored.

In our investigation, we only considered identical soft walled circular potentials; in prin-

ciple one could observe different physics by using hard walled potentials, or by changing

the shape of the individual barriers. We were also limited in the effective widths of the

barrier which we could study due to the size of the system. An immediate next step in

the work which we carried out would be to increase the size of the barriers still further,

and determine the possibility of the pinning number becoming saturated. Beyond this,

the minimum separation could be altered so that eventually the system consists of small

isolated “pools” of non-zero density.

Inspired by the experimental works of Andronikashvili et al. [365] who measured the

period of closely stacked disks in rotating Helium, an interesting system to simulate would

be that of a disordered point-like potential which oscillates linearly in a superfluid which is

initially at rest. This would be similar to the experimental set up of Inouye [60]. Further,

perhaps the most experimentally realisable geometry in which to operate would be that

of a toroidal trap which has point-like potentials randomly distributed throughout.

In classical fluids, Darcy’s Law [412] relates the discharge of a fluid which flows through

a porous medium to the difference in pressure before and after the porous medium. With

a subtle adaptation to the point-like disorder potential which we have studied, it may

be relatively straight-forward to realise an effective superfluid version of Darcy’s law.

Since the law for classical fluids can be related to Ohm’s law, this could be an exciting

stepping-stone to relating superfluid flows in disordered potentials to the emerging field

of atomtronics [413].

11.2.3 Extended Point Vortex Models

The work carried out in Chapter 10 is carried out in the limit of weak, slowly varying,

disordered potentials. This is due to the fact that the Thomas-Fermi approximation fails

as the potentials vary quickly. Future work should proceed by using a background density

field which is calibrated by numerically finding the ground state of the system using the

GPE. It is also unclear whether, if the potential is strong enough that there are regions of

zero background density, image vortices would be needed in the model. Resolving these

two issues will immediately lead to a huge parameter space of disordered potentials which

may be explored in a numerically inexpensive way.

Recently, it has been possible to access a huge number of point vortices in simula-

tions by re-casting the point vortex model as a hydrodynamical equation for vortex fluid

density [381, 384, 411]. This is obtained by considering a large number of well separated

vortices as a fluid in their own right. As an added flourish, it may be possible to derive a

similar hydrodynamical equation for a dissipative point vortex model which accounts for

fluctuations in the background density of the superfluid.



Appendix A

Derivation of Mean–Field Results

A.1 Derivation of the GPE

We begin with the second quantised Hamiltonian for Bose field operators is

Ĥ(t) =

∫
d3rΨ̂† (r, t) Ĥs.p. (r, t) Ψ̂ (r, t)

+
1

2

∫
d3r

∫
d3r′Ψ̂† (r, t) Ψ̂† (r′, t)Vint (r, r′) Ψ̂ (r′, t) Ψ̂ (r, t) , (A.1)

where the operator Ψ̂(r, t) annihilates a boson located at r at time t. The first integral in

Eqn. (A.1) corresponds to a non-interacting ideal gas, whose single-particle Hamiltonian

is

Ĥs.p. (r, t) = − ~2

2m
∇2 + Vext(r, t), (A.2)

for some external (trapping) potential, Vext. We assume that the gas is sufficiently dilute

that 3-body collisions are rare, so Vint encapsulates the interactions between two bosons

(the two-body interaction potential).

The Bose field operators obey the equal time commutation relations[
Ψ̂ (r, t) , Ψ̂† (r′, t)

]
= δ (r− r′) , (A.3)[

Ψ̂ (r, t) , Ψ̂ (r′, t)
]

= 0, (A.4)[
Ψ̂† (r, t) , Ψ̂† (r′, t)

]
= 0, (A.5)

The Heisenberg equation of motion for this system is

i~
∂

∂t
Ψ̂ (r, t) =

[
Ψ̂ (r, t) , Ĥ(t)

]
, (A.6)
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and we can expand the right hand side of this equation to get

i~
∂

∂t
Ψ̂ (r, t) = Ψ̂ (r, t) Ĥ(t)− Ĥ(t)Ψ̂ (r, t)

= Ψ̂ (r, t) Ĥ(t)−
∫
d3r′Ψ̂† (r′, t) Ĥs.p. (r

′, t) Ψ̂ (r′, t) Ψ̂ (r, t)

− 1

2

∫
d3r′

∫
d3r′′Ψ̂† (r′, t) Ψ̂† (r′′, t)Vint (r′, r′′) Ψ̂ (r′′, t) Ψ̂ (r′, t) Ψ̂ (r, t) .

Using Eqn. (A.4), one moves the Ψ̂ (r, t) term towards the left of both integrands resulting

in

i~
∂

∂t
Ψ̂ (r, t) = Ψ̂ (r, t) Ĥ(t)−

∫
d3r′Ψ̂† (r′, t) Ψ̂ (r, t) Ĥs.p. (r

′, t) Ψ̂ (r′, t)

− 1

2

∫
d3r′

∫
d3r′′Ψ̂† (r′, t) Ψ̂† (r′′, t) Ψ̂ (r, t)Vint (r′, r′′) Ψ̂ (r′′, t) Ψ̂ (r, t) .

The commutation relation in Eqn. (A.3) is slightly more complicated, as Ψ̂† (r′, t) Ψ̂(r, t) =

Ψ̂(r, t)Ψ̂† (r′, t) − δ (r− r′). Applying this to the previous equation, one can rearrange

expand both integrands as

i~
∂

∂t
Ψ̂ (r, t) = Ψ̂ (r, t) Ĥ(r, t)−

∫
d3r′

[
Ψ̂ (r, t) Ψ̂ (r′, t)− δ (r− r′)

]
Ĥs.p. (r

′, t) Ψ̂ (r′, t)

− 1

2

∫
d3r′

∫
d3r′′Ψ̂† (r′)

[
Ψ̂ (r) Ψ† (r′′)− δ (r− r′′)

]
Vint (r′, r′′) Ψ̂ (r′′) Ψ̂ (r′) ,

(A.7)

where the t dependence of the operators in the second integrand is implied for brevity.

Expanding this and applying the delta functions gives

i~
∂

∂t
Ψ̂ (r, t) = Ψ̂ (r, t) Ĥ(r, t)− Ψ̂ (r, t)

∫
d3r′Ψ̂ (r′, t) Ĥs.p. (r

′, t) + Ĥs.p. (r, t) Ψ̂ (r, t)

− 1

2

∫
d3r′

∫
d3r′′Ψ̂† (r′, t) Ψ̂ (r, t) Ψ̂† (r′′, t)Vint (r′, r′′) Ψ̂ (r′′, t) Ψ̂ (r′, t) ,

+
1

2

∫
d3r′Ψ̂† (r′, t)Vint (r′, r) Ψ̂ (r, t) Ψ̂ (r′, t) ,

which may then be written as

i~
∂

∂t
Ψ̂ (r, t) = Ψ̂ (r, t) Ĥ(r, t)− Ψ̂ (r, t)

∫
d3r′Ψ̂ (r′, t) Ĥs.p. (r

′, t) + Ĥs.p. (r, t) Ψ̂ (r, t)

− 1

2

∫
d3r′

∫
d3r′′Ψ̂(r, t)Ψ̂† (r′, t) Ψ̂† (r′′, t)Vint (r′, r′′) Ψ̂ (r′′, t) Ψ̂ (r′, t) ,

+

∫
d3r′Ψ̂† (r′, t)Vint (r′, r) Ψ̂ (r, t) Ψ̂ (r′, t) ,
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Collecting terms, this is

i~
∂

∂t
Ψ̂ (r, t) = Ĥ (r, t) Ψ̂ (r, t) +

∫
d3r′′Ψ̂† (r′′, t)Vint (r, r′′) Ψ̂ (r′′, t) Ψ̂ (r, t) .

(A.8)

Assuming that the temperature of the gas is sufficiently low, the interactions between

particles are low energy s-wave collisions. Mathematically, we can model these interactions

as collisions between atoms which are elastic collisions of two hard spheres,

Vint (r, r′) = gδ (r− r′) , (A.9)

where

g =
4π~2Nas

m
, (A.10)

with as, the s-wave scattering length, and m the mass of the atomic species. Since the

condensate occupies a single macroscopic state, we may decompose the operator Ψ̂ (r, t)

as the sum of a mean field term, 〈Ψ̂ (r, t)〉 = Ψ (r, t) and a fluctuation term δΨ̂ (r, t),

where 〈δΨ̂(r, t)〉 = 0. This allows us to write

Ψ̂ (r, t) = Ψ (r, t) + δΨ̂ (r, t) , (A.11)

which we substitute into Eqn. (A.8). Taking the expectation value and ignoring non-linear

terms in δΨ̂, we have the Gross-Pitaevskii Equation

i~
∂Ψ

∂t
= − ~2

2m
∇2Ψ + Vext (r, t) Ψ + g|Ψ|2Ψ. (A.12)

In order to conserve particle number in the grand canonical system, we must use the

modified Hamiltonian Ĥ′ = Ĥ − µN̂ , where

N̂ =

∫
d3r Ψ̂†(r, t)Ψ̂(r, t) (A.13)

is the total number operator, and µ is the chemical potential. It is relatively straight-

forward to repeat the analysis above with Ĥ′ and one obtains

i~
∂Ψ

∂t
= − ~2

2m
∇2Ψ + Vext (r, t) Ψ + g|Ψ|2Ψ− µΨ. (A.14)

This is exactly the same as Eqn. (A.12), with the addition of a chemical potential term.
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A.2 The GPE in lower dimensions

The energy functional of the 3D GPE given in Eqn. (2.8), and derived in the previous

section, is

E [Ψ] =
~2

2m
|∇Ψ|2 + Vext|Ψ|2 +

1

2
g|Ψ|4 − µ|Ψ|2 (A.15)

where the total energy is

E [Ψ] =

∫
E [Ψ] d2r = Ekin + Epot + Eint − Echem. (A.16)

Suppose we have a harmonically trapped condensate, whose trapping potential is given

by

Vext(r) =
1

2
mω2

⊥
(
x2 + y2

)
+

1

2
mω2

‖z
2. (A.17)

A highly oblate condensate may be formed with trapping frequencies ω⊥ � ω‖. The

condensate is quasi-2D when the confinement in the z direction is sufficiently strong to

prevent excitations in this direction. Typically, this is given by the condition ~ω‖ � µ.

In the quasi 2D regime, the system may be described by the 3D wavefunction

Ψ3D(r, t) = π−1/4l−1/2
z Ψ⊥ (x, y, t) exp

(
− z

2

2l2z

)
, (A.18)

where the z dependence is a Gaussian ground state, and lz is the oscillator length in

the z direction, lz =
√

~/
(
mω‖

)
. The numerical factors in Eqn. (A.18) are chosen so

that
∫
d2r |Ψ⊥|2 = N . In what follows we will derive a two-dimensional Gross-Pitaevskii

equation, by integrating out the z dependence. Throughout this derivation, we will make

use of the identities [280] ∫ ∞
−∞

e−az
2

dz =

√
π

a
(A.19)∫ ∞

−∞
z2 e−az

2

dz =
1

2

√
π

a3
. (A.20)

We begin by calculating

|∇Ψ3D|2 = π−1/2l−1
z |∇⊥Ψ⊥|2 e−z

2/l2z + π−1/2l−5
z |Ψ⊥|2 z2e−z

2/l2z ,

where ∇⊥ =
(
∂
∂x
, ∂
∂y

)
, and substitute this into the kinetic energy term. Thus

Ekin =
~2

2m

∫
d3r |∇Ψ3D|2

=
~2

2m

∫
d2r |∇⊥Ψ⊥|2

∫ ∞
−∞

π−1/2l−1
z e−z

2/l2z dz

+
~2

2m

∫
d2r |Ψ⊥|2

∫ ∞
−∞

π−1/2l−5
z z2e−z

2/l2z dz,
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and by applying the identities in Eqn. (A.19) and (A.20), this becomes

Ekin =
~2

2m

∫
d2r |∇⊥Ψ⊥|2 +

~2

4ml2z

∫
d2r |Ψ⊥|2 . (A.21)

Next we compute the potential energy term, Epot which is given by

Epot =

∫
d3r Vext |Ψ3D|2

=
1

2
mω2

⊥

∫
d2r

(
x2 + y2

)
|Ψ⊥|2

∫ ∞
−∞

π−1/2l−1
z e−z

2/l2z dz

+
1

2
mω2

‖

∫
d2r |Ψ⊥|2

∫ ∞
−∞

π−1/2l−1
z z2e−z

2/l2z dz.

Using the identities in Eqn. (A.19) and (A.20), this is

Epot =

∫
d2r V⊥ |Ψ⊥|2 +

1

4
mω2

‖l
2
z

∫
d2r |Ψ⊥|2 , (A.22)

where V⊥ represents the components of the trap in the xy plane. Finally, we compute the

interaction term

Eint =
1

2
g3D

∫
d3r |Ψ3D| =

1

2
g3D

∫
d2r |Ψ⊥|

∫ ∞
−∞

π−1l−2
z e−2z2/l2z dz

to be

Eint =
1√
2πlz

1

2
g3D

∫
d2r |Ψ⊥| (A.23)

and the chemical potential term to be

Echem = µ

∫
d2r |Ψ⊥|2 . (A.24)

Combining the results of Eqns. (A.21)–(A.24) we get

E [Ψ] =
~2

2m

∫
d2r |∇⊥Ψ⊥|2 +

∫
d2r V⊥ |Ψ⊥|2 +

1√
2πlz

1

2
g

∫
d2r |Ψ⊥|

−
(
µ− ~2

4ml2z
− 1

4
mω2

‖l
2
z

)∫
d2r |Ψ⊥|2

which is exactly the same functional form as in Eqn. (A.16). All that remains is to identify

the new constants,

g2D =
g3D√
2πlz

=

√
8π~2as
mlz

, (A.25)

and

µ2D = µ3D −
1

2
~ω‖, (A.26)

which is recovered by using the definition of the harmonic oscillator length.

We note that it is possible to further constrain the system to a quasi 1D “cigar”. To
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do so follows similar arguments to the derivation above, integrating over the y dimension,

and one finds the one-dimensional interaction parameter and one-dimensional chemical

potential. The results of this calculation are omitted from this thesis.

A.3 Derivation of the Hydrodynamic Equations of

Motion

In this section we derive Eqns. (2.27) and (2.23), presented in Sec. 2.3.

The Hydrodynamic equations of motion can be derived form the GPE by substituting

the Madelung transform,

Ψ (r, t) =
√
ρ(r, t) exp [iθ (r, t)]

into the Gross–Pitaevskii Equation, Eqn. (2.8), which yields (cancelling eiθ terms)

i~
(

1

2
√
ρ

∂ρ

∂t
+ i
√
ρ
∂θ

∂t

)
= − ~2

2m

[
∇2√ρ+ 2i (∇√ρ) · (∇θ)−√ρ (∇θ) · (∇θ) + i

√
ρ∇2θ

]
+ Vext

√
ρ+ gρ3/2. (A.27)

We can then separate this equation into real,

− ~
√
ρ
∂θ

∂t
= − ~2

2m

[
∇2√ρ−√ρ (∇θ) · (∇θ)

]
+ Vext

√
ρ+ gρ3/2, (A.28)

and imaginary,
~

2
√
ρ

∂ρ

∂t
= − ~2

2m

[
2 (∇√ρ) · (∇θ) +

√
ρ∇2θ

]
(A.29)

parts. If we consider Eqn. (A.28), we can write

∂

∂t

(
~
m
θ

)
=

~2

2m2

1√
ρ
∇2√ρ− 1

2

(
~
m
∇θ
)
·
(
~
m
∇θ
)
− 1

m
Vext −

g

m
ρ. (A.30)

Recalling the fact that v = (~/m)∇θ, this can be written

∂v

∂t
= ∇

[
~2

2m2

(
1√
ρ
∇2√ρ

)
− 1

2
v · v − 1

m
Vext −

g

m
ρ

]
. (A.31)

Rearranging terms, and noticing that ∇ (v · v) = 2 (v · ∇) v and 2ρ∇ρ = ∇ρ2, we arrive

at

ρ

[
∂v

∂t
+ (v · ∇) v

]
= −1

2

g

m
∇ρ2 +

~2

2m2
ρ∇
(

1√
ρ
∇2√ρ

)
− ρ

m
∇Vext, (A.32)

which is similar in form to the Euler equation for an inviscid fluid. We introduce P =
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gρ2/(2m) which is a pressure term, and the quantum pressure term

Π =
~2

2m2

1√
ρ
∇2√ρ (A.33)

in which case the equation reads

∂v

∂t
+ (v · ∇) v = −1

ρ
∇P +∇Π− 1

m
∇Vext. (A.34)

On the other hand, we may write Eqn. (A.29) as

1√
ρ

∂ρ

∂t
+ 2 (∇√ρ) ·

(
~
m
∇θ
)

+
√
ρ∇ ·

(
~
m
∇θ
)

= 0, (A.35)

which, on using (~/m)∇θ = v, is

1√
ρ

∂ρ

∂t
+ 2 (∇√ρ) · v +

√
ρ∇ · v = 0. (A.36)

Using the fact that ∇√ρ = (∇ρ) /
(
2
√
ρ
)
, this can be written as

∂ρ

∂t
+ (∇ρ) · v + ρ∇ · v = 0, (A.37)

where the second and third terms may be combined to get the continuity equation,

∂ρ

∂t
+∇ · (ρv) = 0. (A.38)

A.4 Identifying the Condensate Fraction

In this section we detail the means by which we compute the condensate fraction of a

system1. This derivation is based on the criterion of Penrose and Onsager [15], which is

cast into the c-field methodology by Blakie et al. [133].

According to the criterion of Penrose and Onsager [15], the condensate number of a

system is identified as the largest eigenvalue of the one-body density matrix. We write

the one-body density matrix as

G1B (r, r′) = 〈Ψ∗ (r) Ψ (r′)〉T , (A.39)

where 〈·〉T indicates short time averaging. Following the procedure of Blakie et al. [133],

it is more efficient to compute G1B in the spectral basis in this problem. Suppose the

1Note that an outline version of this code, based on the procedure in Ref. [133], was provided by
Andrew Groszek.



138 APPENDIX A. DERIVATION OF MEAN–FIELD RESULTS

wavefunction Ψ can be expanded as

Ψ (r) =
∑
α

cαφα (r) ,

then we write

G1B
αβ = 〈c∗αcβ〉. (A.40)

This means that, in spectral space the condensate mode ψ̃0 is given by∑
β

G1B
αβ ψ̃0β = n0ψ̃0 (A.41)

where α, β index the modes within the c-field region.

In Part III, we use a Fourier spectral basis. This means the cα are readily computed by

taking the Fast Fourier Transform (FFT) of the wavefunction, F [Ψ], and α indexes the

modes in the projection region, given by |k| < kcut. In order to numerically implement

the result in Eqn. (A.41), we do the following: Firstly, we compute the FFT of the

wavefunction, which is Ψ̃ = F [Ψ]. We repeat this for the samples of the wavefunction in

some window of time, so that we can use short time averaging. This allows us to compute

G1B
αβ in Eqn. (A.40). We then compute the eigenvalues and eigenvectors of G1B

αβ , using the

eigs function in Matlab. By the Penrose and Onsager criterion, the largest eigenvalue is

the condensate number; as the background of the wavefunction is normalised to be one,

we can calculate the condensate fraction n0. The condensate mode in Fourier space is the

eigenvector which corresponds to this eigenvalue, ψ̃0. From here it is relatively straight

forward to compute the non-condensate fraction, nnc = 1 − n0, and the non-condensate

mode (in Fourier space), which is the sum of the remaining eigenvectors. All that then

remains is to take inverse FFTs of the condensate and non-condensate modes.

A.5 Identifying the Superfluid Fraction

It is possible to extract the superfluid fraction of a system using the current–current

correlations of the wavefunction. This result is derived in Refs. [301, 319], and may also

be derived using the theory of hydrodynamics in a superfluid [111, 320]. Throughout this

section we will assume that we are working in a box B containing both superfluid and

normal fluid fractions, with dimensions Lx × Ly.
Suppose that we are able to accelerate the walls until they are moving with a small

velocity v, which without loss of generality we take to be in the x̂ direction. If the box is

filled with a normal fluid, which is subject to viscous effects between itself and the wall,

the momentum density at equilibrium will be

〈p̂〉v = nv (A.42)
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where n is the number density of the fluid. We assume that the fraction of fluid in the box

which is superfluid remains stationary in the laboratory frame, even at equilibrium; this

is due to the fact that the velocity v is not enough to force a fluid which has no viscosity

to flow. According to Landau’s two fluid model [50], we have n = ρs+ρn. As described in

Chapter 8, ρn is the normal fluid density, ρs is the superfluid density, and by our choice of

dimensionless variables ρs (equivalently ρn) is both the superfluid (normal fluid) density

and the superfluid (normal fluid) fraction. As a result, the observed momentum density

of the fluid at equilibrium will be

ρnv ≤ (ρn + ρs) v = nv. (A.43)

We must now consider two frames of reference: in the laboratory frame, the walls

move with velocity v in the x̂ direction and the Hamiltonian of the system is HL; in the

wall frame (the frame of reference which is moving with the walls), the walls are at rest

and the Hamiltonian of the system is Hv. These Hamiltonians are related by a Galilean

transformation, so that

Hv = HL − v · P̂ +
1

2
mN |v|2, (A.44)

where the total momentum is given by

P̂ =

∫ Ly

0

dy

∫ Lx

0

dx p̂(r), (A.45)

and p̂(r) is the momentum at point r.

If we assume that the fluid is in thermal equilibrium with the walls, then we may

employ a standard result from Statistical Mechanics to write down the expectation value of

the momentum density (see, for example, [288]). The expectation value of the momentum

density reads

〈p̂(r)〉v =
Tr
[
exp

(
−βHL + βP̂ · v − 1

2
βm|v|2N + βµN

)
p̂(r)

]
Tr
[
exp

(
−βHL + βP̂ · v − 1

2
βm|v|2N + βµN

)] , (A.46)

which we can expand this equation to terms which are linear in v. Beginning by writing

exp
(
Ĥ
)

= exp

(
−βHL −

1

2
βm|v|2N + βµN

)
(A.47)

we can write the expectation value as

〈p̂(r)〉v =
Tr
[
exp

(
Ĥ
)

exp
(
βP̂ · v

)
p̂(r)

]
Tr
[
exp

(
Ĥ
)

exp
(
βP̂ · v

)] ≈
Tr
[
exp

(
Ĥ
)(

1 + βP̂ · v
)

p̂(r)
]

Tr
[
exp

(
Ĥ
)(

1 + βP̂ · v
)] (A.48)

where the approximation comes from using the first two terms of the Maclaurin series of
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the exponential function. Using the linearity of the trace of a matrix, we can perform on

a binomial expansion on the denominator of the expectation to get

〈p̂(r)〉v =

Tr
[
exp

(
Ĥ
)

p̂(r)
]

Tr
[
exp

(
Ĥ
)] + β

Tr
[
exp

(
Ĥ
)(

P̂ · v
)

p̂(r)
]

Tr
[
exp

(
Ĥ
)]


×

1− β
Tr
[
exp

(
Ĥ
)

P̂ · v
]

Tr
[
exp

(
Ĥ
)] +O

(
v2
) , (A.49)

which is

〈p̂(r)〉v = 〈p̂(r)〉+ β
〈(

P̂ · v
)

p̂(r)
〉
− β 〈p̂(r)〉

〈
P̂ · v

〉
+O

(
v2
)
. (A.50)

The expectation values on the right hand side of Eqn. (A.50) are taken at equilibrium in

the frame where the walls are at rest.

We now make the assumption that the infinite system is homogeneous, which means

that

〈p̂(x)p̂ (x′)〉∞ = 〈p̂(x + r)p̂ (x′ + r)〉∞ (A.51)

〈p̂(x)〉∞ 〈p̂ (x′)〉∞ = 〈p̂(x + r)〉∞ 〈p̂ (x′ + r)〉∞ (A.52)

for all r, where the subscript on the angle brackets suggests that the average is taken over

an infinite system. Setting r = −x we recover

〈p̂(x)p̂ (x′)〉∞ = 〈p̂(0)p̂ (x′ − x)〉∞
=

1

(2π)2

∫
d2keik·(x

′−x)

∫
d2re−ik·r〈p̂(0)p̂(r)〉∞, (A.53)

and

〈p̂(x)〉∞ 〈p̂ (x′)〉∞ = 〈p̂(0)〉∞ 〈p̂ (x′ − x)〉∞
=

1

(2π)2

∫
d2keik·(x

′−x)

∫
d2re−ik·r 〈p̂(0)〉∞ 〈p̂(r)〉∞ , (A.54)

where in each case the second equality is found by Fourier transforming the average, and

then inverse Fourier transforming to the relative coordinate (x′ − x).

We now make the approximation that we are in a very large system, so that the

expectation values 〈p̂(x)p̂ (x′)〉 ≈ 〈p̂(x)p̂ (x′)〉∞ and 〈p̂(x)〉 〈p̂ (x′)〉 ≈ 〈p̂(x)〉∞ 〈p̂ (x′)〉∞.

Using the above identities, and considering only terms which are linear in v, this means



APPENDIX A. DERIVATION OF MEAN–FIELD RESULTS 141

that we can write Eqn. (A.50) as

〈p̂(x)〉v ≈ 〈p̂(x)〉∞
+

β

(2π)2

∫
B

d2x′
∫
d2keik·(x

′−x)

∫
d2re−ik·r 〈p̂(0)p̂(r)〉∞ · v

− β

(2π)2

∫
B

d2x′
∫
d2keik·(x

′−x)

∫
d2re−ik·r 〈p̂(0)〉∞ 〈p̂(r)〉∞ · v,

(A.55)

where the integrals are carried out over the box, B.

We now introduce the nascent delta function, which is defined as

∆ (k, B) =
1

(2π)2

∫
B

d2x′eik·x
′

(A.56)

where, again, the integral on the right hand side is performed over the box B with

dimensions Lx×Ly. We introduce this function because it has the properties ∆ (k, B)→
δ(k, 0) as B →∞, and it can be factorised so that ∆ (k, B) = ∆ (kx, Lx) ∆ (ky, Ly) where

each of the factors ∆ (kj, Lj)→ δ (kj) as Lj →∞, for j ∈ {x, y}.
Since we have assumed that the superfluid fraction remains stationary in the labo-

ratory frame in equilibrium is zero, 〈p̂(x)〉∞ = 0. Changing the order of integration in

Eqn. (A.55), we write

〈p̂(x)〉v ≈ β

∫
d2k

[
1

(2π)2

∫
B

d2x′eik·x
′
]
e−ik·x

∫
d2re−ik·r 〈p̂(0)p̂(r)〉∞ · v

(A.57)

where the quantities in the square brackets can be identified as nascent delta functions,

Enq. (A.56). Inserting this function allows us to write

〈p̂(x)〉v ≈ β

∫
d2k∆ (k, B) e−ik·x

∫
d2re−ik·r 〈p̂(0)p̂(r)〉∞ · v. (A.58)

Following Foster et al. [301], we now introduce the dyad

χ(k) =

∫
d2re−ik·r 〈p̂(0)p̂(r)〉∞ , (A.59)

which is essentially a current-current correlation term. We now approximate the finite

system with the calculations we have performed above for the infinite system, and along

with the dyad in Eqn. (A.59) we recover

〈p̂(x)〉u = β

∫
d2k∆(k, B)e−ik·xχ(k) · v. (A.60)

We now introduce an equivalent form to Eqn. (A.59), which is more tractable for the
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numerical simulations which we consider in Part III. In the limit of vanishing momentum,

we write the current–current correlations of a system with volume V in equilibrium at

temperature T as

Jαβ(k) =
〈〈

[F (J)]α [F (J)]∗β

〉
t

〉
r

=

(
ρs
kαkβ
k2

+ ρnδαβ

)
kBTV

m2
, (A.61)

where F (J) indicates that the momentum is calculated using Eq. (2.26) and then trans-

formed into Fourier space [310]. The angled brackets 〈〈·〉t〉r indicate that the correlations

are found by short time averaging and by averaging over the ensemble of initial conditions.

The current–current correlations in the system are captured by

χ (k) =

[
Jxx Jxy

Jyx Jyy

]
=
[
(ρs + ρn) k̂k̂ + ρn

(
I − k̂k̂

)] kBTV
m2

(A.62)

where we introduce the dyad

k̂k̂ =
1

k2

[
k2
x kxky

kykx k2
y

]
, (A.63)

and I is the identity. We now introduce transverse, χt(k), and longitudinal, χl(k), func-

tions which are scalars depending only on k so that

χ (k) = χl(k)k̂k̂ + χt(k)
(
I − k̂k̂

)
. (A.64)

As suggested by Eqn. (A.64), it is possible to identify the transverse and longitudinal

parts of χ since χl(k) = k̂ · χ(k) · k̂ and χt(k) = k̂⊥ · χ(k) · k̂⊥, where k̂ and k̂⊥ are

mutually orthogonal unit vectors. This means that we can write the matrix χ in terms of

the dyad as(
kBTV

m2

)−1

χ(k) =
1

k2
x + k2

y

(
k2
x kxky

kxky k2
y

)
χl(k) +

1

k2
x + k2

y

(
k2
y −kxky

−kxky k2
x

)
χt(k).

(A.65)

The results which we have obtained so far are heavily reliant on the ability to switch

between the finite box B with dimensions Lx × Ly, and the infinite system. This is

only mathematically robust if we are able to take limits Lx, Ly → ∞, although doing so

simultaneously may cause a divergence in Eqn. (A.65). In fact, it is not trivial to take

the limits Lx, Ly → ∞, as the order of the limits represent completely different physical

situations.

Suppose that we begin by taking the limit Lx → ∞. Physically, this corresponds to

making the box infinitely long in the direction in which the walls are moving. In this

limit, the superfluid continues to be stationary, while the normal fluid moves with the
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walls with velocity v in the x̂ direction. Mathematically, this is

ρnv = lim
Ly→∞

[
lim

Lx→∞
〈p̂(r)〉v

]
. (A.66)

Suppose, on the other hand, that we begin by taking the limit Ly → ∞. This corre-

sponds to making the box infinitely long in the direction which is perpendicular to the

direction in which the walls are moved; all of the fluid, both normal and super-, is swept

along with the walls at with velocity v. Mathematically, this is

(ρn + ρs) v = nv = lim
Lx→∞

[
lim
Ly→∞

〈p̂(r)〉v
]
. (A.67)

We are now in a position to take limits. In doing so we assume that we take limkx→0 χ(k)

by setting kx = 0 in Eqn. (A.65) and requiring ky 6= 0, and similarly for limky→0 χ(k).

Then, using the fact that the nascant delta function implies that

lim
Ly→∞

lim
Lx→∞

∫
d2k∆(k, B)e−ik·xχ(k) = lim

ky→0
lim
kx→0

χ(k), (A.68)

we arrive at

ρnv = lim
ky→0

lim
kx→0

χ(k) =

(
0 0

0 1

)
lim
ky→0

lim
kx→0

χl(k) +

(
1 0

0 0

)
lim
ky→0

lim
kx→0

χt(k)

(A.69)

(ρn + ρs) v = lim
kx→0

lim
ky→0

χ(k) =

(
1 0

0 0

)
lim
ky→0

lim
kx→0

χl(k) +

(
0 0

0 1

)
lim
ky→0

lim
kx→0

χt(k).

(A.70)

Making use of the decomposition in Eqn. (A.64) we find

ρn =
kBTV

m2
lim
ky→0

lim
kx→0

χt(k), (A.71)

ρn + ρs =
kBTV

m2
lim
kx→0

lim
ky→0

χl(k). (A.72)

At this juncture, we note that χl and χt are functions depend only on k, so our final result

is

ρn =
ρn

ρn + ρs
=

limk→0 χt(k)

limk→0 χl(k)
. (A.73)

We are able to evaluate χ at all points in our system, and use the decomposition

described above to find χl and χt, while projecting azimuthally so that the functions

depend only on k. Once this has been obtained, we fit each of ln [χt(k)] and ln [χl(k)] to

a quadratic [301]

f(k; a, b, c) = a+ bk + ck2. (A.74)
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As our simulations are computed on a square grid, the density of points increases with k;

to account for this in our curve fitting procedure, we set the uncertainty to be proportional

to k.

Finding the normal fluid density corresponds to taking the limit as k → 0 of the

transverse component of χ, while the same limit of the longitudinal component of χ gives

the sum of the superfluid and normal fluid densities. Taking the limit as k → 0 for the

parameters fitted to Eqn. (A.74) allows us to calculate the normal fluid fraction as

ρn =
limk→0 χt(k)

limk→0 χl(k)
, (A.75)

and ρs = 1−ρn. This allows us to relate the superfluid ad normal fluid fractions to corre-

lations from our simulations, in a similar manner to the condensate and non-condensate

fractions which are determined using G1B.

A.5.1 Decomposing the Momentum of the Wavefunction

A second, “rougher” approximation to the superfluid fraction may be calculated by de-

composing the momentum of the wavefunction. The momentum Ψ can be calculated

using the relationship in Eqn. (2.26),

J =
~

2mi
(Ψ∗∇Ψ−Ψ∇Ψ∗) .

Using Landau’s two–fluid model [50] we may assume that the wavefunction comprises of

a superfluid component, which flows without energy loss, and a normal fluid component,

which is subject to viscous effects. In this framework, the superfluid component has

velocity vs, the normal fluid component has velocity vn, and we may write

J = ρsvs + ρnvn, (A.76)

where ρs and ρn are the superfluid and normal fluid fractions respectively. We now assume

that the normal fluid moves with the barriers [414], so that in the barrier frame of reference

vn = 0 and J = ρsvs. Since the superfluid velocity is locked to the condensate velocity

[351, 352], it is then relatively straight forward to calculate the average momentum of

the wavefunction J , calculate the velocity of the condensate mode, v0, as described in

Eqn. (8.5), and extract an estimate for ρs.



Appendix B

The GPE in a Rotating Frame of

Reference

B.1 Eigenfunctions and Eigenenergies of the One–

Body Hamiltonian

Here we show that the basis functions given in Eqn. (4.18) are the correct eigenfunctions

of the single particle Hamiltonian.

The one-body Hamiltonian is given in dimensionless form in Eqn. (4.10) as

HΩ = −1

2
∇2 + iΓ2x

∂

∂y
+

1

2
Γ4x2,

and we claim that the eigenfunctions take the form

φn,k =
√
aΓ

∞∑
p=−∞

χn

[
Γa

(
k

Nv

+ p

)
− Γx

]
exp

[
iΓ2a

(
k

Nv

+ p

)
y

]
,

where the Hermite functions are given by

χn(x) =
1√

2nn!
√
π
Hn(x) exp

(
−1

2
x2

)
.

For the sake of compactness, we set

An =

√
aΓ√

2nn!
√
π
, � =

k

Nv

+ p, (B.1)

so that

φn,k = An
∑
p

Hn (Γa�− Γx) exp

[
−1

2
(Γa�− Γx)2

]
exp

(
iΓ2a�y

)
. (B.2)

145
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Then, using the relationship

d

dx
Hn(x) = 2nHn−1(x), (B.3)

we can calculate

∂φn,k
∂y

= An
∑
p

iΓ2a�Hn (Γa�− Γx) exp

[
−1

2
(Γa�− Γx)2

]
exp

(
iΓ2a�y

)
,

∂2φn,k
∂y2

= −An
∑
p

Γ4a2�2Hn (Γa�− Γx) exp

[
−1

2
(Γa�− Γx)2

]
exp

(
iΓ2a�y

)
,

(B.4)

along with

∂φn,k
∂x

= An
∑
p

exp

[
−1

2
(Γa�− Γx)2

]
exp

(
iΓ2a�y

)
×
[

Γ (Γa�− Γx)Hn (Γa�− Γx)− 2nΓHn−1 (Γa�− Γx)

]
, (B.5)

and

∂2φn,k
∂x2

= An
∑
p

exp

[
−1

2
(Γa�− Γx)2

]
exp

(
iΓ2a�y

)
× Γ2

[
4n(n− 1)Hn−2 (Γa�− Γx) + 2n (Γa�− Γx)Hn−1 (Γa�− Γx)

+
[
(Γa�− Γx)2 − 1

]
Hn (Γa�− Γx)

]
.

(B.6)
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From here we can substitute Eqn. (4.18) and its derivatives into Eqn. (4.10) to get

HΩφn,k = An
∑
p

exp

[
−1

2
(Γa�− Γx)2

]
exp

(
iΓ2a�y

)
×

[ [
1

2
Γ2 − 1

2
Γ2 (Γa�− Γx)2 +

1

2
Γ4a2�2 − xΓ4a�+

1

2
Γ4x2

]
Hn (Γa�− Γx)

+2nΓ2 (Γa�− Γx)Hn−1 (Γa�− Γx)− 2n(n− 1)Hn−2 (Γa�− Γx)

]
,

= An
∑
p

exp

[
−1

2
(Γa�− Γx)2

]
exp

(
iΓ2a�y

) [1

2
Γ2Hn (Γa�− Γx)

+2nΓ2 (Γa�− Γx)Hn−1 (Γa�− Γx)− 2n(n− 1)Hn−2 (Γa�− Γx)

]
.

(B.7)

We must now make use of the recurrence relation for Hermite polynomials,

Hn(x) = 2xHn−1(x)− 2(n− 1)Hn−2(x). (B.8)

The result is

HΩφn,k =
1

2
Γ2 (2n+ 1)An

∑
p

Hn (Γa�− Γx) exp

[
−1

2
(Γa�− Γx)2

]
exp

(
iΓ2a�y

)
,

(B.9)

and hence we have an eigenfunction

HΩφn,k = Γ2

(
n+

1

2

)
φn,k. (B.10)

B.1.1 Normalisation and Orthonormality of the Eigenfunction

In this section we calculate the normalisation factor An of the the wavefunction given in

Eqn. (4.18), such that

ab =

∫ a

0

∫ b

0

φ∗m,jφn,k dy dx. (B.11)

We need to assume that the summation converges in such a way that we may interchange

the order of summation and integration. Then, the y–integral is

Iy =

∫ b

0

exp

[
−iΓ2a

(
j

Nv

+ q

)
y

]
exp

[
iΓ2a

(
k

Nv

+ p

)
y

]
dy

=

∫ b

0

exp

[
iΓ2ay

(
k − j
Nv

+ p− q
)]

dy. (B.12)
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We make the substitution 2πy = bỹ so that for ỹ ∈ [0, 2π) we have

Iy =
b

2π

∫ 2π

0

dỹ exp

[
iΓ2 ab

2π
ỹ

(
k − j
Nv

+ p− q
)]

=
b

2π

∫ 2π

0

dỹ exp [iỹ (k − j +Nvp−Nvq)] . (B.13)

We are now in a position where, since j, k, p, q,Nv ∈ Z, we can apply the identity

∫ 2π

0

einx =

2π n = 0,

0 otherwise.
(B.14)

In order that Iy doesn’t vanish, we have the requirement [k − j +Nv (p− q)] = 0. This

condition is separable , however, as k, j ∈ {0, 1, . . . , Nv − 1}, thus

Iy = b δj,k δp,q. (B.15)

The result for Iy now reduces Eqn. (B.11) to∫ a

0

∫ b

0

φ∗m,jφn,k dx dy = A∗mAnb×
∞∑

p=−∞

∫ a

0

χ∗m

[
Γa

(
k

Nv

+ p

)
− Γx

]
χn

[
Γa

(
k

Nv

+ p

)
− Γx

]
dx.

(B.16)

We note that the Hermite functions, χm are real, and that the summation over p, imposed

to provide the periodic boundary conditions of the solution, essentially transforms the

integral into an infinite domain, such that∫ a

0

∫ b

0

φ∗m,jφn,k dxdy = A∗mAn
b

Γ

∫ ∞
−∞

χm (x̃)χn (x̃) dx̃.

The Hermite polynomials, Hn(x) are orthogonal over (−∞,∞) with respect to the weight

function e−x
2
, so the Hermite functions χn(x), defined in Eqn. (4.19), are orthonormal

over this interval. This leaves

ab = A∗mAn
b

Γ
δm,n (B.17)

so

φn,k =
√
aΓ

∞∑
p=−∞

χn

[
Γa

(
k

Nv

+ p

)
− Γx

]
exp

[
iΓ2a

(
k

Nv

+ p

)
y

]
.

(B.18)
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B.1.2 Quasi-Periodicity of the Eigenfunction

We can also show that φn,k obeys the quasi-periodic boundary conditions given in Eqns.

(4.16) – (4.17). The y–direction is trivial, as taking y → y + b gives

φn,k(x, y + b) = An

∞∑
p=−∞

χn

[
Γa

(
k

Nv

+ p

)
− Γx

]
eiΓ

2a( k
Nv

+p)yeiΓ
2 ab
Nv

(k+Nvp)

= An

∞∑
p=−∞

χn

[
Γa

(
k

Nv

+ p

)
− Γx

]
eiΓ

2a( k
Nv

+p)ye2πi(k+Nvp), (B.19)

which is in agreement with Eqn. (4.17). On setting x→ x+ a we get

φn,k(x, y + b)

= An

∞∑
p=−∞

χn

[
Γa

(
k

Nv

+ p

)
− Γx− Γa

]
exp

[
iΓ2a

(
k

Nv

+ p

)
y

]

= An

∞∑
p′=−∞

χn

[
Γa

(
k

Nv

+ p′
)
− Γx

]
exp

[
iΓ2a

(
k

Nv

+ p′
)
y

]
eiΓ

2ay

= φn,k(x, y) exp

(
i
2πNvy

b

)
, (B.20)

where p′ = p− 1. Taking the principal value of the argument of this, we recover

Arg [φn,k (x+ a, y)] = Arg [φn,k (x, y)] +
2πy

b
,

which is Eqn. (4.16).

B.2 The Jacobi Theta Functions

The 3rd Jacobi theta function is defined as [280]

ϑ3 (z; τ) = ϑ3 (z|q) = 1 + 2
∞∑
k=1

qk
2

cos (2kz) (B.21)

where z is a complex number, τ is the lattice parameter (which, in general, is also a

complex number), and the nome, q, is related to the lattice parameter by

q = exp(iπτ). (B.22)

To ensure that ϑ3 (z; τ) is an analytic function, the lattice parameter τ should be chosen so

that 0 < |q| < 1, and to avoid issues of multi-valuedness we take qk
2

= exp (ik2πτ), where

k ∈ R. In general the domain is a parallelogram in the complex plane, with vertices 0, π,

τπ and π + τπ, and so, as discussed in the main text, we take τ to be purely imaginary,

so that we are describing a rectangular domain.
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As well as the Fourier series representation of the 3rd Jacobi Theta function given in

Eqn. (B.21), we can express the function as

ϑ3 (z; τ) =
∞∑

k=−∞

exp
(
iπτk2 + 2ikz

)
. (B.23)

To prove this, one simply uses the identity cos (2kz) =
(
e2ikz + e−2ikz

)
/2 and manipulates

the infinite sum.

B.2.1 Periodic and Quasi-Periodic Boundary Conditions

In the main text, we use the periodic and quasi-periodic boundary conditions of the 3rd

Jacobi Theta function. In this sub-section we will prove these properties.

We claim that

ϑ3 [z + (m+ nτ) π; τ ] = e−2inze−πτn
2

ϑ3 (z; τ) ,

where m,n ∈ Z. To prove this, we consider the form of the 3rd Jacobi Theta function

given in Eqn. (B.23). This gives

ϑ3 [z + (m+ nτ) π; τ ] =
∞∑

k=−∞

exp
(
iπτk2

)
exp [2ikz + 2ik (m+ nτ)π] (B.24)

which, noting that e2ikmπ = 1 for integers k and m, reduces to

ϑ3 [z + (m+ nτ) π; τ ] =
∞∑

k=−∞

exp
(
iπτk2

)
exp (2ikz + 2iknτπ) . (B.25)

The trick now is to note that

iπτk2 + 2iknτπ = iπτ (k + n)2 − iπτn2,

so that we can write

ϑ3 [z + (m+ nτ)π; τ ] = exp
(
−iπτn2

) ∞∑
k=−∞

exp
[
iπτ(k + n)2

]
exp (2ikz) , (B.26)

or equivalently

ϑ3 [z + (m+ nτ) π; τ ] =

exp
(
−iπτn2

)
exp (−2inz)

∞∑
k=−∞

exp
[
iπτ(k + n)2

]
exp (2ikz) exp (−2inz) .

(B.27)
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Since the sum over k is infinite, we can introduce the dummy variable k′ = k + n so that

the expression above becomes

ϑ3 [z + (m+ nτ) π; τ ] = exp
(
−iπτn2

)
exp (−2inz)

∞∑
k′=−∞

exp
(
iπτk′2

)
exp (2ik′z) ,

(B.28)

which (dropping primes) proves that

ϑ3 [z + (m+ nτ) π; τ ] = e−2inze−πτn
2

ϑ3 (z; τ) . (B.29)



Appendix C

Identifying Vortices and Vortex

Pinning

Throughout this thesis we have been concerned with the dynamics of quantized vortices.

In Part IV, we have considered different point vortex models, where the dynamics of the

system are described by the position of the vortices. In Parts II and III, however, we

have modelled the system using the PGPE, where the vortex positions enter the system

implicitly through the velocity field of the wavefunction Ψ. In these cases, it is necessary

to be able to detect the location and charges of quantized vortices, and vortices which are

pinned to barriers. In a similar calculation to the vortex detection method described in

Ref. [301], in this section we describe the method used to detect the winding number, W ,

about a given barrier.

Using the Madelung transformation, we write the wavefunction as Ψ = |Ψ| exp (iθ) ,

where |Ψ|2 is the particle density, and θ is proportional to the velocity potential. The

circulation of a quantum fluid is quantized, so that around any closed contour the change

in the phase, ∆θ is given as

∆θ =

∮
C
∇θ · dr = 2πW (C.1)

for some integerW which we shall refer to as the winding number. A vortex with non-zero

charge W (which may also be called a charge W vortex) is detected when the contour

C contains the vortex core and the phase changes continuously from 0 to 2πn around

this curve. In order to detect a vortex which is pinned to a barrier (that is to say – the

vortex is contained within the zero density region of the barrier but the branch-cut which

represents the singularity in the phase extends into the non-zero density region of the

condensate) we compute the winding number W about some contour which contains the

barrier centre.

In our simulations, the wavefunction Ψ is computed at discrete grid points and so we

calculate the line integral in Eqn. (C.1) numerically. For a barrier with centre (xB, yB)

and effective width a, we create an annulus which has inner radius rin and outer radius

rout. A sketch of this set-up is given in Fig. C.1. The inner and outer radii are chosen

152
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(xB, yB)

j

(xj, yj)

rin

rout

Figure C.1: A schematic of the numerical method used to compute the winding number
in each barrier. The contour integral in Eqn. (C.1) is performed by evaluating the phase
at the grid points (indicated with pluses) located within the annulus with inner radius
rin and outer radius rout, shown. The angle αj at each grid point can be computed by
αj = arctan2 (yB − yj, xB − xj). The colour plot represents a density weighted plot of
the phase, θ|Ψ|2, where Ψ = |Ψ|eiθ; the white central region represents the area within
the barrier where the density of the fluid vanishes. In this case, the barrier supports a
winding number W = 1.

so that the computational grid points contained within the annulus are outside the zero

density region of the barrier, but do not overlap with the annulii enclosing other barriers.

Once the grid points contained within the anulus have been identified, they are sorted in

order of increasing αj and the phase of the wave function is evaluated at each point. We

then calculate the unwrapped phase difference between neighbouring points,

∆θj,j+1 = θ
∣∣
αj
− θ

∣∣
αj+1

. (C.2)

It is necessary to unwrap the phase in this way to ensure that the phase is continuous

between neighbouring points [301], however working on a discrete grid this continuity

is poorly defined as there may be jumps in the phase of 2π; to correct for this we add

multiples of 2π so that |∆θj,j+1| < π . The winding number is then computed as a sum

of ∆θj,j+1.

Fortunately we must only consider singly charged vortices, as it has been predicted

theoretically [234, 235] and confirmed experimentally [236] that multiply charged vortices

are unstable and will split into n singly charged vortices.

The process of vortex detection in the bulk of a superfluid (away from boundaries) is

a simplified version of this calculation. In this case, rather than the circular array of grid

points used in Eqn. (C.2), the calculation uses four neighbouring grid points which form

a square around the centre of the vortex1.

1Note that the code for this vortex detection was kindly provided by Andrew Groszek



Appendix D

Derivation of the 2D Point Vortex

Model with Background Fluctuations

In this appendix we present a full derivation of the Point Vortex Model with the addition

of a varying background density field. This derivation is based on the work of Törnkvist

and Schröder, Ref. [231], although it focuses on the case of a two dimensional system.

D.1 The Filament Coordinate System

We adopt the coordinate system of [231] for a one-dimensional string, which is the fil-

ament of a defect. At any time t, we say that the position of the filament of a vortex

is given by X(s, t), where s is the natural parameterisation of the vortex filament (i.e.,

it parameterises the arc length of the filament). At this position, we can develop an

orthonormal coordinate basis using the so-called Frenet frame.

We define the tangent vector

T (s, t) =
∂X

∂s
(D.1)

and the normal vector N (s, t) as usual. This is sometimes known as the Osculating

plane. A sketch of this system is in Fig. D.1. To make an orthonormal basis we define the

binormal vector to be B(s, t) = T ×N , which completes the Frenet frame. In differential

geometry, the Frenet-Serret formulas [408] describe both the dynamic properties of a

particle moving along a continuous smooth curve, as well as the intrinsic properties of the

curve itself. The formulas are stated as

∂T

∂s
= κN , (D.2)

∂N

∂s
= −κT + τB, (D.3)

∂B

∂s
= −τN , (D.4)

where κ is the curvature of the curve, and τ is the torsion of the curve which is the

measure of how quickly the curve is twisting out of the plane of curvature (torsion can
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T(s, t) = ∂X
∂s

N(s, t)

B(s, t) = T × N
X(s, t)

Figure D.1: The osculating plane.

also be thought of as the measure of the turn-around of the binormal vector). In this frame,

we can describe any position x in the neighbourhood of the string can be expressed as

x = X(s, t) + xN (s, t) + yB(s, t). (D.5)

We note that the coordinate representation (s, x, y) is unique, so long as x, y < κ−1 where

κ−1 is the radius of curvature. The approach of [231] is to then introduce polar coordinates

in this local region, defined as x = r cosϕ, y = r sinϕ. The representation in Eqn. (D.5)

now reads

x = X(s, t) + r cosϕN (s, t) + r sinϕB(s, t). (D.6)

Note that for the representation in Eqn. (D.6), since (r, ϕ) define plane-polar coordinates

and the vectors N and B are orthogonal by construction, we have basis vectors

r̂ = cosϕN + sinϕB, (D.7)

ϕ̂ = − sinϕN + cosϕB. (D.8)

From this coordinate representation, we are left to derive expressions for the gradient

and then the Laplacian.

D.1.1 The Gradient of the Filament Coordinate System

The metric tensor (assuming the Einstein summation convention where appropriate) in

orthogonal curvilinear coordinates is defined as

gµν =
∂x

∂qµ
∂x

∂qν
, (D.9)
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where

dx · dx =
∂xλ
∂qµ

∂xλ

∂qν
dqµdqν . (D.10)

So we can calculate

dx =

(
∂X

∂s
+ r cosϕ

∂N

∂s
+ r sinϕ

∂B

∂s

)
ds+ (cosϕN + sinϕB) dr

+ (−r sinϕN + r cosϕB) dϕ

= T (1− κr cosϕ) ds+ τ (−r sinϕN + r cosϕB) ds+ (cosϕN + sinϕB) dr

+ (−r sinϕN + r cosϕB) dϕ,

where we have used Eqns. (D.1), (D.3) and (D.4) on the terms in the first bracket. From

here, using the fact that {T ,N ,B} are pairwise orthonormal, we compute

dx · dx =
[
(1− κr cosϕ)2 + τ 2r2

]
dsds+ drdr + r2dϕdϕ+ 2τr2dsdϕ. (D.11)

The metric tensor can then be written as

gµν =

(1− κr cosϕ)2 + τ 2r2 0 τr2

0 1 0

τr2 0 r2

 (D.12)

where qµ, qν ∈ {s, r, ϕ}. We can calculate the determinant of this to be

det (gµν) = r2 (1− κr cosϕ)2 (D.13)

We can invert the metric tensor in three steps: firstly we find the matrix of minors which

is given by  r2 0 −τr2

0 r2 (1− κr cosϕ)2 0

−τr2 0 (1− κr cosϕ)2 + τ 2r2

 .
Secondly, we apply the alternate sign rule, which in this case is trivial. Hence the matrix

of minors is also the matrix of cofactors. Finally, using det (gµν) as found in Eqn. (D.13),

we have

gµν =


1

(1− κr cosϕ)2 0
−τ

(1− κr cosϕ)2

0 1 0
−τ

(1− κr cosϕ)2 0
1

r2
+

τ 2

(1− κr cosϕ)2

 . (D.14)
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We now define “basis-vectors” as bµ = x ,µ = ∂x/∂qµ. So

bs = T (1− κr cosϕ) + τ (−r sinϕN + r cosϕB) , (D.15)

br = cosϕN + sinϕB = r̂, (D.16)

bϕ = −r sinϕN + r cosϕB = rϕ̂, (D.17)

and using this we can use the inverse metric tensor, Eqn. (D.14), in the definition of the

gradient,

∇ = bµ
∂

∂qµ
= gµνbν

∂

∂qµ
. (D.18)

In order to use this definition, we calculate

bs = gssbs + gsrbr + gsϕbϕ

=
1

1− κr cosϕ
T , (D.19)

br = grrbr = cosϕN + sinϕB, (D.20)

bϕ = gϕsbs + gϕϕbϕ

= − τ

1− κr cosϕ
T +

1

r2
[−r sinϕN + r cosϕB] . (D.21)

So, substituting Eqns. (D.19) – (D.21) into the definition given by Eqn. (D.18), we arrive

at

∇ = T

[
1

(1− κr cosϕ)

∂

∂s
− τ

(1− κr cosϕ)

∂

∂ϕ

]
+ r̂

∂

∂r
+

1

r
ϕ̂
∂

∂ϕ
. (D.22)

D.1.2 The Laplacian of the Filament Coordinate System

To calculate the Laplacian of this coordinate system we use the definition for general

curvilinear coordinates qµ,

∇2 =
1√
g

∂

∂qµ

(√
ggµν

∂

∂qν

)
. (D.23)

The non-zero elements of the inverse metric tensor we found in Eqn. (D.14) are

gss =
1

(1− κr cosϕ)2 , (D.24)

grr = 1, (D.25)

gϕϕ =
1

r2
+

τ 2

(1− κr cosϕ)2 , (D.26)

gsϕ = − τ

(1− κr cosϕ)2 = gϕs. (D.27)

Then, as
√

det (gµν) = r (1− κr cosϕ) does not depend on s, substituting Eqns. (D.24)

– (D.27) into Eqn. (D.23), we find
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∇2 = gss
∂2

∂s2
+ gsϕ

∂2

∂s∂ϕ
+

1√
g

∂

∂r

[
r (1− κr cosϕ)

∂

∂r

]

+
1√
g

∂

∂ϕ

[
−τr (1− κr cosϕ)

(1− κr cosϕ)2

∂

∂s
+

(
(1− κ cosϕ)

r
+

τ 2r

(1− κr cosϕ)

)
∂

∂ϕ

]

=
1

(1− κr cosϕ)2

∂2

∂s2
− τ

(1− κr cosϕ)2

∂2

∂s∂ϕ
+

[
1− κr cosϕ

r (1− κr cosϕ)
− κ cosϕ

(1− κr cosϕ)

]
∂

∂r

+
∂2

∂r2

+
1

r (1− κr cosϕ)

∂

∂ϕ

[
− τr

(1− κr cosϕ)

∂

∂s
+

(
(1− κ cosϕ)

r
+

τ 2r

(1− κr cosϕ)

)
∂

∂ϕ

]

=
1

(1− κr cosϕ)2

∂2

∂s2
− 2τ

(1− κr cosϕ)2

∂2

∂s∂ϕ
+

1

r

∂

∂r
− κ cosϕ

(1− κ cosϕ)

∂

∂r
+

∂2

∂r2

+
1

r (1− κr cosϕ)

[
τκr2 sinϕ

(1− κr cosϕ)2

∂

∂s
+

(
(1− κr cosϕ)

r
+

τ 2r

(1− κr cosϕ)

)
∂2

∂ϕ2

]

+
1

r (1− κr cosϕ)

(
κ sinϕ− τ 2κr2 sinϕ

(1− κr cosϕ)2

)
∂

∂ϕ

=
∂2

∂r2
+

1

r

∂

∂r
+

(1− κr cosϕ)2 + τ 2r2

r2 (1− κr cosϕ)2

∂2

∂ϕ2
− κ

1− κr cosϕ

(
cosϕ

∂

∂r
− κ sinϕ

∂

∂ϕ

)

+
1

(1− κr cosϕ)2

∂2

∂s2
− 2τ

(1− κr cosϕ)2

∂2

∂s∂ϕ
+

τκr2 sinϕ

r (1− κr cosϕ)3

∂

∂s

− τ 2κr sinϕ

(1− κr cosϕ)3

∂

∂ϕ

=
∂2

∂r2
+

1

r

∂

∂r
+

1

r2

∂2

∂ϕ2
− κ

1− κr cosϕ

(
cosϕ

∂

∂r
− κ sinϕ

∂

∂ϕ

)

+
1

(1− κr cosϕ)2

∂2

∂s2
− 2τ

(1− κr cosϕ)2

∂2

∂s∂ϕ
+

τκr2 sinϕ

r (1− κr cosϕ)3

∂

∂s

− τ 2κr sinϕ

(1− κr cosϕ)3

∂

∂ϕ
+

τ 2

(1− κr cosϕ)2

∂2

∂ϕ2
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At this point, we employ some clever factorisation for the terms on the second and third

lines to recover

∇2 =
∂2

∂r2
+

1

r

∂

∂r
+

1

r2

∂2

∂ϕ2
− κ

1− κr cosϕ

(
cosϕ

∂

∂r
− κ sinϕ

∂

∂ϕ

)

+

[
1

1− κr cosϕ

(
∂

∂s
− τ ∂

∂ϕ

)]2

. (D.28)

D.2 The Vortex Equation of Motion

The multivalued nature of the phase of a vortex will cause problems with continuity and

differentiability as r → 0. To counter this, we split the modulus and phase of Ψ as follows:

let

|Ψ| = Rw, (D.29)

S = χ+ θ (D.30)

where lnR depends on the filament position and contains any contribution to the modulus

which is non-differentiable at r = 0. Similarly, we absorb into χ any part of the phase field

which is multivalued at any point, or non-differentiable at r = 0. As R and χ only occur

in the combinations described in Eqns. (D.29) and (D.30), they are non-unique subject

to the independent symmetries

χ→ χ+ δ, θ → θ − δ, (D.31)

R→ Rf, w → wf−1, (D.32)

for suitably differentiable arbitrary functions δ and ln f. Using this definition, Eqn. (9.13)

becomes

dΨ

dt
=

d

dt
(lnR + lnw + iχ+ iθ)

= P (Ψ,Ψ∗) Ψ + b∇2 (lnR + lnw + iχ+ iθ) .

We now follow [231] and write a set of coupled PDEs for this system. On substituting

Ψ = Rw exp [i (θ + χ)] (D.33)
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into Eqn. (9.13) we have

LHS =
dΨ

dt
=

d

dt
[Rw] ei(θ+χ) +Rw

d

dt
ei(θ+χ)

=
dR

dt
wei(θ+χ) +R

dw

dt
ei(θ+χ) + iRw

dθ

dt
ei(θ+χ) + iRw

dχ

dt
ei(θ+χ)

= Rwei(θ+χ)

[
1

R

dR

dt
+

1

w

dw

dt
+ i

dθ

dt
+ i

dχ

dt

]
= Rwei(θ+χ) d

dt
[lnR + lnw + iθ + iχ] . (D.34)

As an aside, we make note of several vector calculus identities for scalar fields ψ, φ.

Mainly

∇ · (φ∇ψ) = φ∇2ψ +∇φ · ∇ψ (D.35)

∇2(ψφ) = φ∇2ψ + 2∇ψ · ∇φ+ ψ∇2φ (D.36)

∇2 lnφ = ∇ ·
(

1

φ
∇φ
)

=
1

φ
∇2φ− 1

φ2
∇φ · ∇φ. (D.37)

Then,

∇2Ψ = ∇2 (Rw) ei(θ+χ)︸ ︷︷ ︸
1

+ 2∇(Rw) · ∇ei(θ+χ)︸ ︷︷ ︸
2

+Rw∇2ei(θ+χ)︸ ︷︷ ︸
3

(D.38)

and so term by term:

Term 1 = ∇2 (Rw) ei(θ+χ) =
[
R∇2w + 2∇R · ∇w + w∇2R

]
ei(θ+χ), (D.39)

Term 2 = iRwei(θ+χ)

(
1

w
∇w +

1

R
∇R

)
· (∇θ +∇χ) , (D.40)

and

Term 3 =

Rw
[
iei(θ+χ)∇2χ− ei(θ+χ)∇χ · ∇χ− 2ei(θ+χ)∇θ · ∇χ+ iei(θ+χ)∇2θ − ei(θ+χ)∇θ · ∇θ

]
.

From here, we can write the Laplacian term of Eqn. (9.13) as

∇2Ψ = Rwei(θ+χ)

[
1

w
∇2w +

2

Rw
∇R · ∇w +

1

R
∇2R

]
+ 2iRwei(θ+χ)

(
1

w
∇w +

1

R
∇R

)
· (∇θ +∇χ)

+ Rwei(θ+χ)
[
i∇2χ− (∇χ)2 − 2∇χ · ∇θ + i∇2θ − (∇θ)2] , (D.41)
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and then we have [applying the identity in Eqn. (D.37)]

1

A
∇2Ψ =

[
1

w
∇2w +

2

Rw
∇R · ∇w +

1

R
∇2R

]
+ 2i

(
1

w
∇w +

1

R
∇R

)
· (∇θ +∇χ)

+
[
i∇2χ− (∇χ)2 − 2∇χ · ∇θ + i∇2θ − (∇θ)2]

= ∇2 lnR +∇2 lnw + (∇ lnR +∇ lnw)2 − (∇θ +∇χ)2

+i
[
∇2χ+∇2θ + 2 (∇ lnw +∇ lnR) · (∇θ +∇χ)

]
.

By setting b = bR + ibI , we can then write this expression in real and imaginary parts

d

dt
(lnR + lnw) = Re [P (A,A∗)] + bRQ1 − bIQ2, (D.42)

d

dt
(θ + χ) = Im [P (A,A∗)] + bIQ1 + bRQ2, (D.43)

where we define the quantities

Q1 =
(
∇2 lnR +∇2 lnw

)
+ (∇ lnR +∇ lnw)2 − (∇χ+∇θ)2 , (D.44)

Q2 =
(
∇2χ+∇2θ

)
+ 2 (∇ lnR +∇ lnw) · (∇χ+∇θ) . (D.45)

D.2.1 The 2D System

Up to this point, we have assumed that we are working with a 3D vortex filament which

can be modeled as a curve in the Frenet-Serret frame. In order to derive the equation of

motion for a 2D system, we assume that the vortex are straight parallel tubes, and that

we can take a cut in the xy–plane. The result of this is that the curvature and torsion of

the filaments vanish, so κ, τ → 0. In 2D we are also without gauge freedom, so

R = r|n|, (D.46)

χ = nϕ. (D.47)

From here we can calculate

∇ lnR = r̂
|n|
r
, ∇χ =

n

r
ϕ̂,

∇2 lnR = 0, ∇2χ = 0. (D.48)

Substituting this result into Eqns. (D.44) and (D.45) we arrive at

Q
(2D)
1 = ∇2 lnw + 2

|n|
r
r̂ · ∇ lnw − 2

n

r
ϕ̂ · ∇θ + (∇ lnw)2 − (∇θ)2 , (D.49)

Q
(2D)
2 = ∇2θ + 2

|n|
r
r̂ · ∇θ + 2

n

r
ϕ̂ · ∇ lnw + 2 lnw · ∇θ. (D.50)

The time derivative in the lab-frame is related to the time derivative in the moving
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reference frame of the local segment of the filament by

d

dt
= −Ẋ · ∇+

∂

∂t
. (D.51)

Combining these results, we arrive at two more equations for the real and imaginary parts

of the complex field,

∂

∂t
(lnR + lnw) = Ẋ · r̂ |n|

r
+ Ẋ · ∇ lnw + Re (P )

+ bR

[
∇2 lnw + 2

|n|
r
r̂ · ∇ lnw − 2

n

r
ϕ̂ · ∇θ + (∇ lnw)2 − (∇θ)2

]
− bI

[
∇2θ + 2

|n|
r
r̂ · ∇θ + 2

n

r
ϕ̂ · ∇ lnw + 2 lnw · ∇θ

]
, (D.52)

and

∂

∂t
(θ + χ) = Ẋ · ϕ̂n

r
+ Ẋ · ∇θ + Im (P )

+ bR

[
∇2θ + 2

|n|
r
r̂ · ∇θ + 2

n

r
ϕ̂ · ∇ lnw + 2 lnw · ∇θ

]
+ bI

[
∇2 lnw + 2

|n|
r
r̂ · ∇ lnw − 2

n

r
ϕ̂ · ∇θ + (∇ lnw)2 − (∇θ)2

]
.

(D.53)

Equations (D.52) and (D.53) describe the evolution of the four variables R, w, θ and

χ. In both of the equations, there are terms which are proportional to r−1, which will

lead to singularities are r → 0. We must therefore derive regularity conditions for these

equations, so that these singularities cancel term by term. Recall that lnw and θ are

continuous and differentiable anywhere. The form of the function P (A) does not enter

into the remainder of the derivation, as it is globally differentiable.

From Eqns. (D.52) and (D.53), the terms involving an r−1 are

0 = Ẋ · r̂ + 2bR

[
r̂ · ∇ lnw − n

|n|ϕ̂ · ∇θ
]
− 2bI

[
r̂ · ∇θ +

n

|n|ϕ̂ · ∇ lnw

]
(D.54)

0 = Ẋ · ϕ̂+ 2bR

[
n

|n| r̂ · ∇θ + ϕ̂ · ∇ lnw

]
+ 2bI

[
n

|n| r̂ · ∇ lnw − ϕ̂ · ∇θ
]
. (D.55)

where the terms on the right hand side must vanish to ensure regularity. In 2D, the

tangent vector T = ẑ, and we must also note that

r̂ × ϕ̂ = ẑ,

ẑ × r̂ = ϕ̂,

ẑ × ϕ̂ = −r̂. (D.56)

We have equations for the two perpendicular components of Ẋ, which we can combine
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into a vector equation by using the identity

a× (b× c) = b (a · c)− c (a · b) . (D.57)

Thus,

r̂
(
Ẋ · ϕ̂

)
− ϕ̂

(
Ẋ · r̂

)
=

− r̂

[
2bR

(
n

|n| r̂ · ∇θ + ϕ̂ · ∇ lnw

)
+ 2bI

(
n

|n| r̂ · ∇ lnw − ϕ̂ · ∇θ
)]

+ ϕ̂

[
2bR

(
r̂ · ∇ lnw − n

|n|ϕ̂ · ∇θ
)
− 2bI

(
r̂ · ∇θ +

n

|n|ϕ̂ · ∇ lnw

)]
(D.58)

where the term on the left hand side,

r̂
(
Ẋ · ϕ̂

)
− ϕ̂

(
Ẋ · r̂

)
= Ẋ× (r̂ × ϕ̂) = Ẋ× ẑ. (D.59)

Taking the vector product of this with ẑ, and collecting like terms, we get

ẑ ×
(
Ẋ× ẑ

)
= − (ẑ × r̂)

[
2bR

(
n

|n| r̂ · ∇θ + ϕ̂ · ∇ lnw

)
+ 2bI

(
n

|n| r̂ · ∇ lnw − ϕ̂ · ∇θ
)]

+ (ẑ × ϕ̂)

[
2bR

(
r̂ · ∇ lnw − n

|n|ϕ̂ · ∇θ
)
− 2bI

(
r̂ · ∇θ +

n

|n|ϕ̂ · ∇ lnw

)]

= −2bR
n

|n|∇θ × (ϕ̂× r̂)− 2bRẑ × [∇ lnw × (r̂ × ϕ̂)]

−2bI
n

|n|∇ lnw × (ϕ̂× r̂) + 2bI ẑ × [∇θ × (r̂ × ϕ̂)] .

Note that the left hand side is

ẑ ×
(
Ẋ× ẑ

)
= Ẋ (ẑ · ẑ)− ẑ

(
ẑ · Ẋ

)
,

and, as the tangential velocity is devoid of physical meaning, it is possible to set ẑ · Ẋ = 0

by a time dependent reparametrization s→ s(t); this is called worldsheet reparametriza-

tion invariance in relativistic string theory [231]. Therefore, the resulting equation of

motion is

Ẋ = −2bR
n

|n| ẑ×∇θ+2bRẑ×(ẑ ×∇ lnw)−2bI
n

|n| ẑ×∇ lnw−2bI ẑ×(ẑ ×∇θ) , (D.60)

or, more simply

Ẋj = −2bR
nj
|nj|

ẑ ×∇θj − 2bR∇ lnw − 2bI
nj
|nj|

ẑ ×∇ lnw + 2bI∇θj (D.61)

where the terms involving lnw on the right hand side are evaluated at the position rj.
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We recall that

θj =
Nv∑
k=1
k 6=j

nk arctan

(
yjk
xjk

)
,

where xjk = xj − xk and yjk = yj − yk. We note that, if the background density w = U0,

some constant uniform background density, we exactly recover the equation found by [239,

240]. It is possible to compute that the gradient terms

∇θj =
Nv∑
k=1
k 6=j

1

r2
jk

(
−yjk
xjk

)
, (D.62)

where r2
jk = x2

jk + y2
jk. By comparison to the dissipative system

i
∂Ψ

∂t
= (1− iγ)

[
H + g|Ψ|2 − µ

]
Ψ, (D.63)

we have bR = γ/2 and bI = 1/2, therefore

Ẋj = −γ nj|nj|
ẑ ×∇θj − γ∇ lnw − nj

|nj|
ẑ ×∇ lnw +∇θj. (D.64)

i.e., for nk = ±1, this is

d

dt
rj =

Nv∑
k=1
k 6=j

nk
r2
jk

γnjxjk − yjk
γnjyjk + xjk

− 1

w (rj)

γwx (rj)− njwy (rj)

γwy (rj) + njwx (rj)

 . (D.65)



APPENDIX D. PVM WITH DENSITY CONTRIBUTIONS 165

D.3 Some Simple Analytic Solutions

Consider a point vortex model for a system with two vortices, each with unit charges

(n1,2 = ±1), on a homogeneous background, w = 0. The coupled equations of motion are

d

dt
r1 =

n2

r2
12

(
−y12

x12

)
+
γn1n2

r2
12

(
x12

y12

)
, (D.66)

d

dt
r2 =

n1

r2
21

(
−y21

x21

)
+
γn2n1

r2
21

(
x21

y21

)
. (D.67)

The dynamics of such a system is mainly influenced by the sign of the vortices; we consider

this effect in the next two subsections. In both cases, we will assume that the vortices are

initially at r1(0) = (x1(0), y1(0)) and r2(0) = (x2(0), y2(0)), where the vector from r1(0)

to r2(0) has length r0 and subtends an angle ϑ0 = tan (y12(0)/x12(0)) with the x axis.

D.3.1 A dipole pair

Suppose that we have a dipole pair, n1 = 1, n2 = −1. We can combine the equations of

motion as

d

dt

(
x12

y12

)
=

d

dt
r1 −

d

dt
r2

= − 1

r2
12

(
−y12

x12

)
− γ

r2
12

(
x12

y12

)
− 1

r2
21

(
−y21

x21

)
+

γ

r2
21

(
x21

y21

)

= − 1

r2
12

(
−y12

x12

)
− γ

r2
12

(
x12

y12

)
+

1

r2
12

(
−y12

x12

)
− γ

r2
12

(
x12

y12

)
,

by using the symmetry of r2
12 and the anti-symmetry of x12 and y12. For convenience we

write x = x12, y = y12, and r2 = x2 + y2, so that the equations of motion become

dx

dt
= −2γx

r2
,

dy

dt
= −2γy

r2
. (D.68)

We make the substitution to polar coordinates x = $ cosϑ and y = $ sinϑ, where

$2 = x2 + y2 and ϑ = arctan (y/x). In these coordinates, the time derivatives are

d$

dt
=

x

$

dx

dt
+
y

$

dy

dt
,

dϑ

dt
=

1

$2

(
x
dy

dt
− ydx

dt

)
(D.69)

so we can write the coupled equations in Eqn. (D.68) as

d$

dt
= −2γ

$
,

dϑ

dt
= 0. (D.70)
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In the absence of dissipation, γ = 0, meaning $(t) = r0 and ϑ = ϑ0. This solution

corresponds to a dipole pair which move together in parallel with fixed translational

velocity [402]. When dissipation is present, the solution is $2 = r2
0 − 4γt. This means

that we can write the separation

[r12(t)]2 = x2
12 + y2

12 = [r12(0)]2 − 4γt, (D.71)

indicating that the dipole pair will move together at a rate proportional to the damping

parameter γ until they eventually annihilate.

D.3.2 A chiral pair

Suppose that the vortices are of the same sign, n1 = n2. Without loss of generality, take

n1 = 1 = n2. Now, we can combine the equations of motion as

d

dt

(
x12

y12

)
=

2

r2
12

(
−y12

x12

)
+

2γ

r2
12

(
x12

y12

)
, (D.72)

For convenience we write x = x12, y = y12, and r2 = x2 + y2, so that the equations of

motion become
dx

dt
=
−2y + 2γx

r2
,

dy

dt
=

2x+ 2γy

r2
. (D.73)

At this juncture, we again convert to plane polar coordinates and write Eqn. (D.73) as

d$

dt
=

2γ

$
,

dϑ

dt
=

2

$2
. (D.74)

In the absence of dissipation, $ = r0 and ϑ = ϑ0 + 2t/r2
0. This corresponds to a pair of

vortices which rotate around their centre of vorticity with fixed separation [402]. If, on

the other hand, there is dissipation in the system, the solutions take the form

$2(t) = 4γt+ r2
0, ϑ(t) =

1

2γ
ln

(
1 +

4γt

r2
0

)
+ ϑ0, (D.75)

which corresponds to a pair of vortices which follow a modified spiral away from each

other.

D.4 A continuous disordered potential

We consider the continuously disordered potential defined in a cell with dimensions −L ≤
x ≤ L and −L ≤ y ≤ L by Eqn. (10.5) as

Vext(r) =
∑

(kx,ky)∈K

Ak cos

[
2π

L
(xkx + yky) + ϕk

]
,
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where the random variables Ak ∼ U [0, 1] and ϕk ∼ U [0, 2π), and the modes considered

are K =
{

(kx, ky) : k2
min ≤ k2

x + k2
y ≤ k2

max

}
. It can be shown that this trap is orthogonal,

so that ∫
d2r V ′ (r)V (r) = 2L2

∑
k∈K

∑
k′∈K

AkAk′δk,k′ . (D.76)

For a two-dimensional function, f(x, y), defined in a region −L ≤ x ≤ L and −L ≤ y ≤ L,

it is possible to write the Root Mean Square (RMS) value of this function as

fRMS =

√
1

4L2

∫
d2r [f(x, y)]2. (D.77)

If the function f(x, y) is the sum of K known waveforms, and the component waveforms

are orthogonal, then the RMS of the resulting function is given by

RMSTotal =

√
RMS2

1 + RMS2
2 + · · ·+ RMS2

K . (D.78)

Since the potential defined in Eqn. (10.5) is orthogonal, we calculate that the Root Mean

Square of the potential, VRMS, is given by

VRMS =

√
1

2

∑
k∈K

A2
k. (D.79)

Suppose we wish to put a bound on the maximum value of the trap. The amplitude

of each of the component waveforms of the trap is Ak, and if we suppose that the all of

the waves have a local maximum at the origin1 then Vmax, the maximum value of the

potential, is given by the sum of the amplitudes, Vmax =
∑

k∈KAk. We can rearrange the

formula for VRMS to get

2V 2
RMS =

∑
k∈K

A2
k.

Using the Cauchy-Schwarz inequality,(∑
k∈K

Ak

)2

≤
(∑

k∈K

A2
k

)(∑
k∈K

12

)
= |K|

∑
k∈K

A2
k (D.80)

where the number of modes contained in the set K is given by |K|. This leads to the

upper-bound for the maximum of the potential,

V 2
max < 2|K|V 2

RMS. (D.81)

1Note that we have avoided such “bunching” by adding the random offset ϕk.
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