Future Challenges for the ICE

September 2017

Dr Robert Morgan Director APC Thermal Efficiency Spoke Deputy Head of the AEC

University of Brighton

Advanced Engineering Centre

Contents

Introduction to the AEC

High level challenges

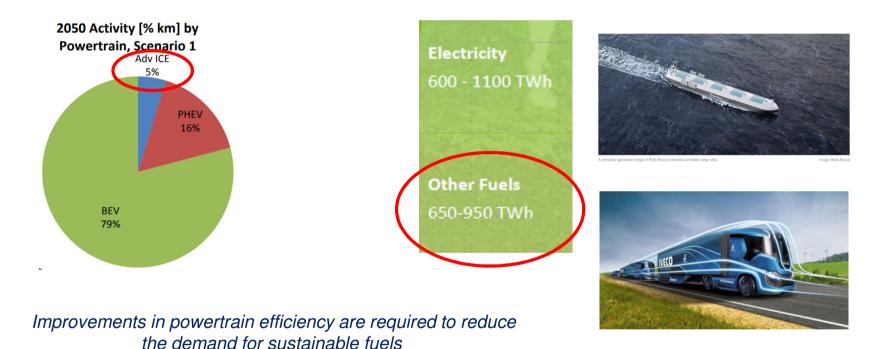
Auto Council Thermal Propulsion Roadmap

The Split Cycle Engine

Conclusions

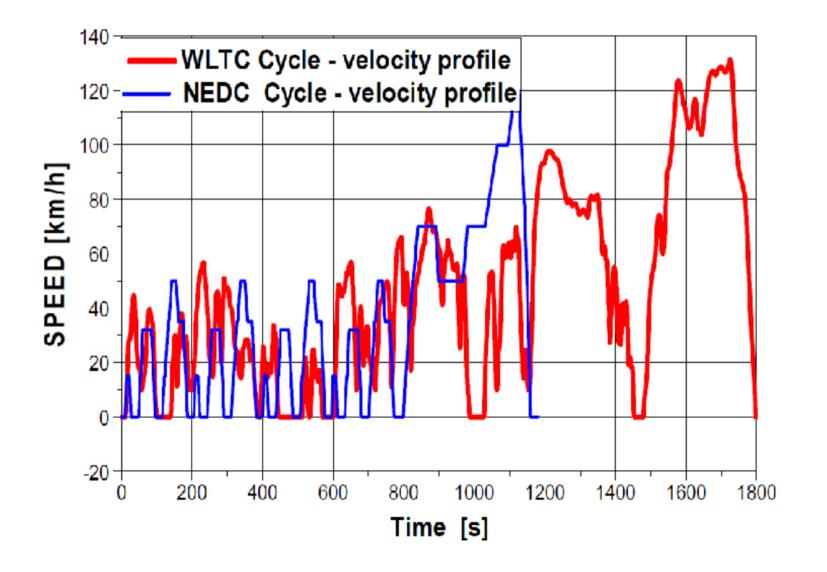
■1989-1994 Imperial College

■1994-2005 Ricardo – Senior Manager,

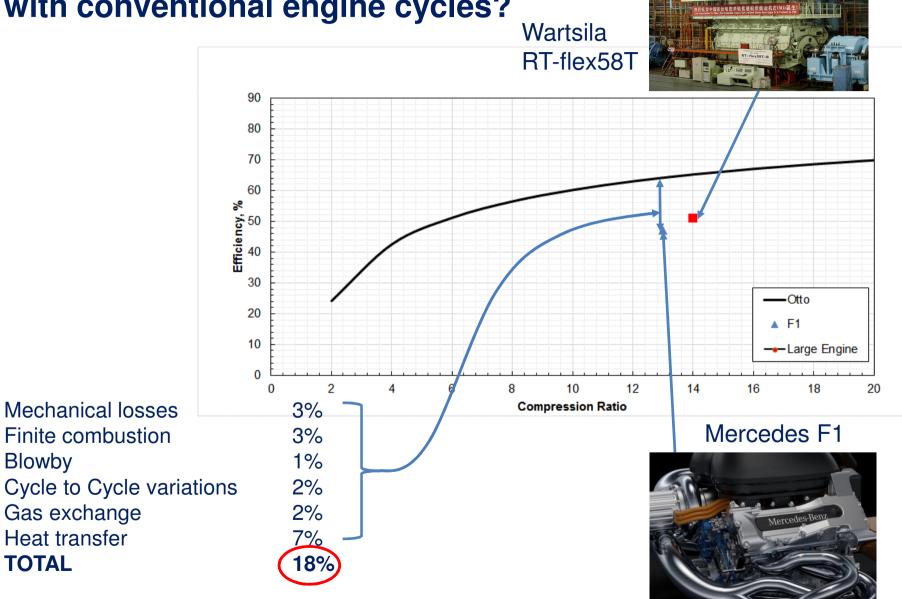

Technology Product Group

- 2005-2008 Ceres Power Head of Engineering
- 2008-2013 Highview Power Storage Chief Technical Officer
- 2013- University of Brighton Reader
 Deputy Head of the Advanced Engineering Centre
 Director of the APC ICE Thermal Efficiency Spoke

Advanced Engineering Centre



Why do we need an efficient engine in an electric world?⁵



Source: Report from ERTRAC CO₂ integrated approach, http://www.ertrac.org/uploads/images/3.%20CO2 Evaluation Group %20ERTRAC2017.pdf

New emission cycle, tighter limits, RDE

Are we at to the end of the road with conventional engine cycles?

Finite combustion Blowby Cycle to Cycle variations Gas exchange Heat transfer TOTAL

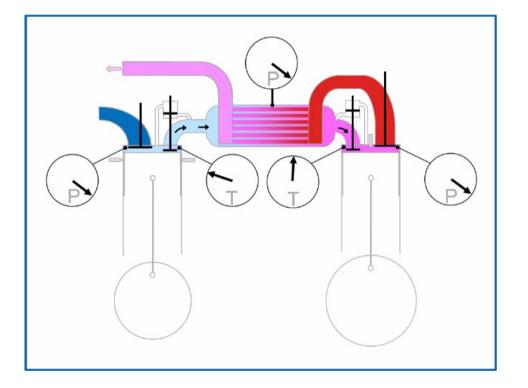
Stone 2012

Mass market adoption of increasingly hybridised vehicles d	lrives c	hallenging	g cost and
performance targets for future thermal propulsion systems			
	· .		

Drivers of change

- Incremental ICE innovation has provided steady improvements over a long period, but **bigger changes are required**.
- Ambitious targets, that are unobtainable with existing engine technology, have been set to drive significant innovation. These targets must be achieved without compromising customer demands of exceptional cost effectiveness, range requirements, power density and recyclability.
- Reducing air quality and CO₂ emissions challenges the current application of all ICE powertrains using conventional fuels. Future sustainable fuels and the associated engine technology are actively being developed, potentially near carbon neutral operation. Air quality and efficiency will remain key drivers.
- Life cycle measures and materials security will challenge all propulsion technologies, supporting the acceptability of ICEs with suitable performance against these metrics
- For light duty vehicles ICE will feature in all hybrid vehicles before the potential advent of fuel cell hybrids. Hybridisation implies a change in the nature of ICEs and offers higher efficiencies.
- For heavy duty the ICE remains core to future propulsion due to the absence of alternatives. Further improvements to efficiency and emissions are needed, including new fuel types and energy recovery.

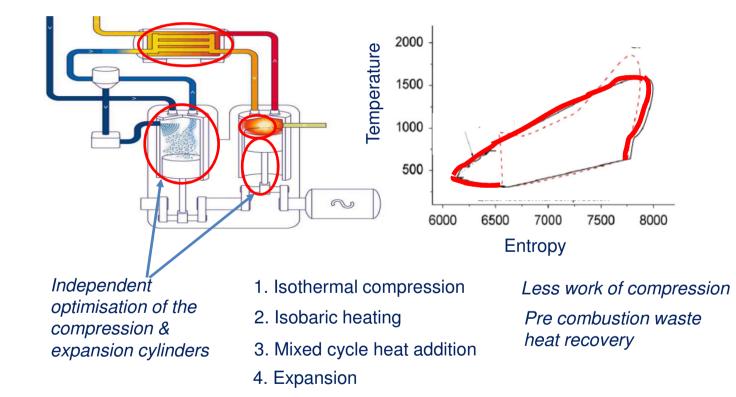
	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	<u></u>	
Light Duty	2017	2025	2035	
Engine System Brake Thermal Efficiency (%) ^{1,2}	42	48	53	· · · · · ·
Tailpipe NOx & Particulates (Mass & Number)	In line with legislated limits	Zero in emissi zon	ons controlled les ³	· · · · · · · · · · · · · · · · · · ·
Heavy Duty	2017	2025	2035	· · · · ·
Engine System Brake Thermal Efficiency (%) ¹	47	55	60	
Tailpipe NOx & Particulates (Mass & Number)	In line with legislated limits		ons controlled les ³	
 Peak efficiency values shown wider operating range, in keepi Values reflect mid point betway Below measureable limits on 	ng with testing cycle ween diesel and gas	es based on real wor oline efficiency (cur	rld performance	
	· · ·	- - -		

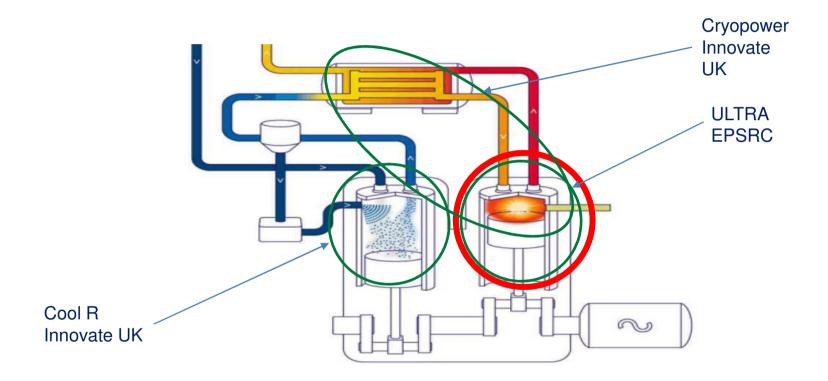

automotive

■ council ▼UK ADVANCED PROPULSION

CENTRE

							:			₹UK	· · · · · · · · · · · · · · · · · · ·	CENTRE
DRIVERS		Tailpipe CO2 and air	quality emission li	imits		Trend to	wards very low	CO2 and air qu	ality emissio	ns limits, zero e	mission zones	, LCA
TARGETS*	Current status 2025 targets						2035 targets					
ight duty brake thermal efficiency (%)	42 %				48 %		53 %					
Heavy duty brake thermal efficiency (%)	47 %				55 %	÷				60 %		
THERMAL EFFICIENCY		nermal management										
	Flexible CR	and valve control er				veles						
Light duty oriented		Efficient combusti	on e.g. lean burn,	HCCI, water ir	jection		Simpl	ified hybrid-foc	used power	units o a caml	oss ongino an	d fuel cell
	Redu	ced heat loss e.g. co	atings, thermal ma	anagement.co	mbustion phasi	na .		ined hybrid-toc	used power	units e.g. carne	ess engine an	u luer cell
		eeu neut toss e.g. eo			erature combust		PPCI, extreme	lean burn NG				
Heavy duty oriented						\rightarrow \rightarrow \rightarrow		power units wi	th integrated	I WHR, eg. split	cycle, high te	emp. fuel cell
	Exhaust I	neat recovery (e.g. tu	irbocompounding	g, Organic Ran	kine Cycle)	\rightarrow		Integrated I	heat recover	y from multiple	heat sources	
Fuelling	Engine o	ptimised for availabl	e fuels i.e. diesel,	gasoline, natu	ral gas	$\rangle\rangle$	Engine	tolerant to a wi	de range of	fuels e.g. synfu	els, H2, adv. fo	ossil
		Flexible fuel system	ns e.g. rate shaping	g, multiple inje	ction, nozzle ge	ometry						
	Advan	ced lubrication and	lightweighting via	design/manul	. and Al, Mg, Ti		\sum					
	Wid	e spectrum after-tre	atment e.g. pre-tu	urbine, low ten	np, elec. assisted	l, alt. fuel suited	Ł	$\rangle \rangle \rangle$	0	n board reform	iing, CO2 cap	ture
Engine systems and control		ost devices for v. wid	e map 👘 🔪 🔪		Contr	olled air supply		gh efficiency co	mbustion e.	g. e-boost and	multi device	
		l powertrain control	\rightarrow		ontrol via V2X	\rightarrow	Aggressive ZE	geo-fencing	\rightarrow	Fully at	uto powertrair	n control, Al
		ectrified light duty a	-	-		\rightarrow						
Enabling drivetrain systems	Manual t	ransmissions replace				\rightarrow		o-developed H				onvertor
······	n na nan na an 1	Hybrid systems for			and recycling	$\rightarrow \rightarrow \rightarrow$		·		gine and hybrid cle impact i.e. i		d impacts
DESIGN AND MANUFACTURING			Design fo					ditive layer, met				a impacts


How does the recuperated split cycle engine work?


Key Facts:

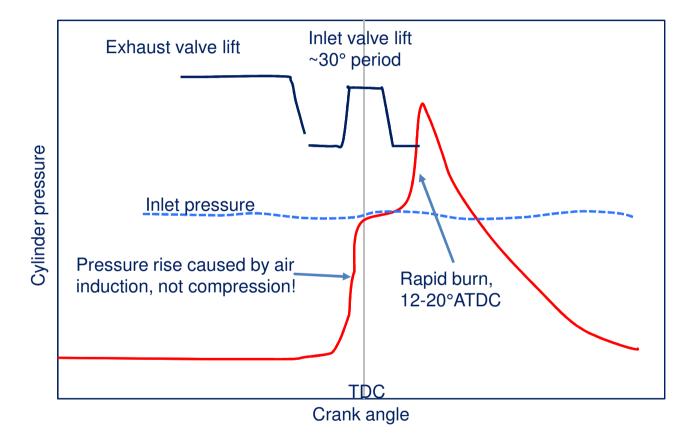
- Twice as many cylinders *but* it's a two stroke cycle
- Compressor combustor cylinders are in the ratio of 1 to 2 or 3
- Isothermal compression is critical to the cycle, and can be achieved in may ways
- Peak pressures are lower than in a conventional diesel engine
- Peak temperatures are also lower, but sustained for longer than in a comparable diesel engine

What makes the cycle efficient?

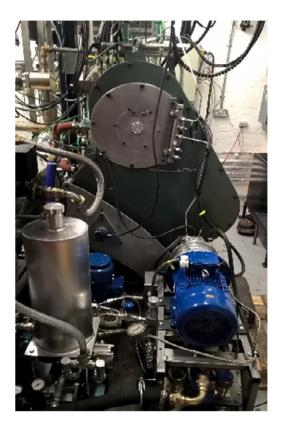
Progress to date

Whats difficult about the implementation?

- Starting:
 - The exhaust and therefore recuperator are cold
 - The combustion chamber is also cold
- Combustion:
 - Very little time to get the air into the combustion chamber
 - Also not much time to get the air and fuel mixed
 - So very little time to get the fuel burnt!
- Hot end thermal load:
 - Although peak temperatures are lower than in conventional diesel engines, the high temperatures are sustained for longer
 - There is also no charge air cooling of the cylinder during induction
 - This results in higher thermal loading than in a conventional engine



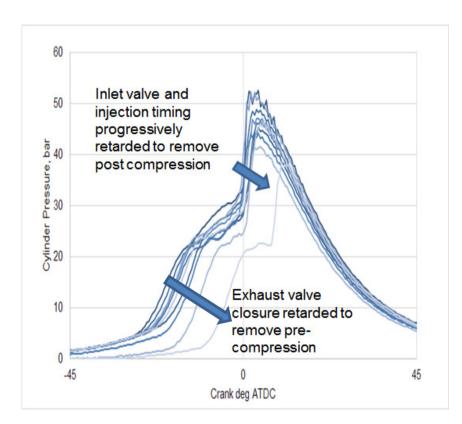
2004 "ISOENGINE" Combustor Component Inspection After first firing tests, November 2002


RWE

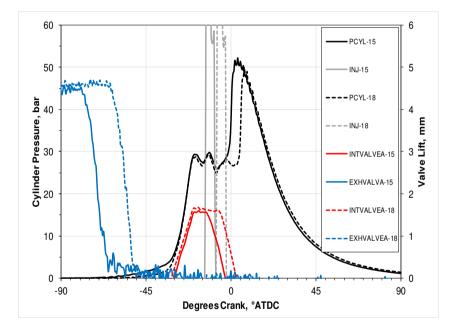
What are we looking for?

Split cycle test facility

- One I/cyl. Single cylinder test rig, based on a Ricardo Titan engine
- Fully configurable hydraulic valves (research rather than production solution)
- Prototype recuperator, heated by a gas burner to replicate the exhaust
- High pressure gas supply in place of the isothermal compressor
- Two independent oil and three independent coolant circuits

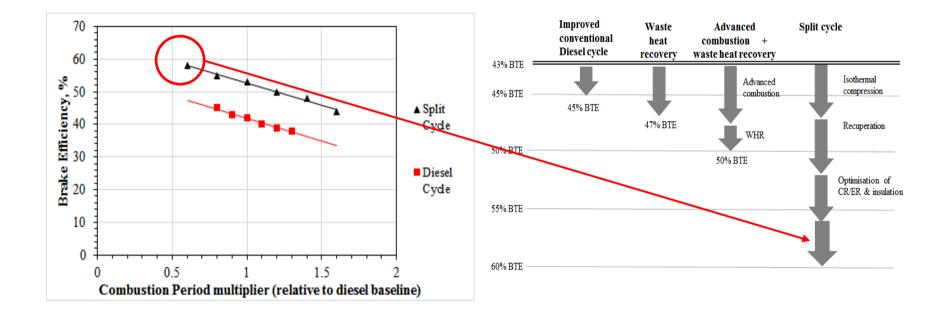

Results - starting

 Starting is one of the biggest challenge in a split cycle engine


 Initial tests used high cetane fuel and compression of trapped residuals

 Advancing the inlet and exhaust valves was found to provide sufficient charge air heating to start the engine from cold

• The valves could be progressively retarded to the ideal split cycle timings


Combustion results at 1200 rpm

 Fuel is injected together with the intake air

- Classical and CFD analysis show the air flow is choked across the inlet valve
 - Very high cross chamber air motion
- The air motion provides significant mixing energy and is thought to by why the fuel burns so quickly
 - Preliminary kinetic analysis suggests the fuel is burning highly premixed

Efficiency walk

Conclusions

There is still a role for a chemically fuelled engine in an electric world

Massive challenge in achieving high efficiency and zero emissions from an internal combustion engine

What do we need?

- Practical lean compression ignition compatible with RDE
- New approaches to achieve >break efficiency