

UK Fluids Network

Experimental Combustion/UK SIG Combustion 28 Sep 2017

Simone Hochgreb, University of Cambridge

Experimental combustion research UK

GTRC EXPERIMENTAL COMBUSTION

Dan Pugh

Constant Volume Bomb HPOC/Swirl Burner EPSRC - AGT Counterflow Burner

> 26th July 2017 pughdg@Cardiff.ac.uk

Constant volume bomb

Study Laminar Flame Propagation

- Schlieren optical technique employed to measure laminar flame speed.
- Facilitates parametric evaluation of temperature, pressure, reactant mixture and humidity.
- Characterise flame stretch and influence on propagation using Markstein length.
- Mass flow control to regulate gaseous or vaporised fuel and equivalence ratio.

AERDY

Constant volume bomb

Work Areas

- Natural Gas / CH₄.
- Alternative fuels syngases, biogas, industrial byproduct gases.
- Parametric changes in temperature and pressure, deriving power law correlations.
- Reaction mechanism optimisation, and development.
- Contemporary work investigating catalytic enhancement of heavily carbonaceous fuels with water addition.

Upcoming Work

- Influence of higher hydrocarbon addition to natural gas (LNG), and change in thermo-diffusive influence.
- Correlating results against behaviour witnessed in generic GT representative swirl burner.

D G. Pugh, A P. Crayford, P J. Bowen, M Al-Naama, Parametric investigation of water loading on heavily carbonaceous syngases, Comb. & Flame, Vol 164, 2016, Pages 126-136,

Dynamic Volume Bomb

Experimental Facility Modification

- Inject and vaporise liquid fuel, then charge air and overpressurise the system.
- Rapid decompression from internal piston forms quasihomogenous mist, droplets characterised with laser diffraction system.
- Quantify the influence of obstacle induced turbulence, with mixture ignited from top.
- Optical tachometers provide scalable rotational speed to induce turbulence into the system.

HPOC – Swirl Burner

System Capability

- Casing rated to 900 K, 16 bar.
- Axial and tangential optical access.
- Liquid or gaseous fuel supply, with combustors operated in premixed or diffusion configurations.
- Five lines allow for fuel/oxidant mixture blending, with precise mass flow control.
- Convergent quartz tubes facilitate optical access, with representative combustor geometry.
- Pressurised steam supply to facilitate humidified combustion.

Analytical Diagnostic Tools

- Optical techniques including; high speed filming, Schlieren, Chemiluminescence, Particle Image Velocimetry (PIV) and Planar Laser Induced Fluorescence (PLIF). High frequency pressure transducers give acoustic output of the system.
- Online gas analysis for real time measurement of exhaust emissions, including; CO, CO₂, NO, NO₂, (Total NO_x), O₂ and unburned hydrocarbons.

HPOC – Swirl Burner

Contemporary Work

- Fuel Flexibility Investigating changes in natural gas composition, (Gas-to-Power, LNG, H₂, C_xH_y) for changes in flame shape, burner operability, emissions, and thermoacoustic response of the system.
- Carbon Free 'Green' combustion Stabilising blended H₂ and NH₃ for GT combustors and energy storage applications.
- Exhaust Gas Recirculation Investigate change in CO₂ reactant fractions on flame operability and produced emissions, and how this may influence downstream CCS technology.
- Humidified combustion Reducing flame temperatures with H_2O to reduce NO_x emissions. Work presented at ASME Turbo expo 2017.

OH* Chemiluminescence

Abel Deconvoluted

NO_x Emissions

D.G. Pugh, P.J. Bowen, R. Marsh, A.P. Crayford, J. Runyon, S. Morris, A. Valera-Medina, A. Giles, Dissociative influence of H_2O vapour/spray on lean blowoff and NOx reduction for heavily carbonaceous syngas swirling flames, Comb. and Flame, Vol. 177 Pages 37-48

2017http://dx.doi.org/10.1016/j.combustflame.2016.11.010.

Humidified CO Work

Molar Reactant H₂O Fraction

Molar Reactant H₂O Fraction

Counterflow Burner

Experimental Facility

- Counterflow or opposed flow burners stabilise flames _ between concentric jets.
- Allowing measurement of laminar flame speed, turbulence, extinction strain rate, chemical speciation and soot formation.
- Reactants shrouded with inert flow to prevent secondary _ flame formation. Setup can be configured for premixed or diffusion flames.

Counterflow Burner

Development of the Cardiff Facility

- Imperial design modified to operate at elevated temperature (473 K) and pressure (10 bar).
- Reactant preheat will facilitate combustion of prevaporised liquid fuels, and humidified combustion.
- Diametric quartz windows will allow for the application of optical diagnostic techniques.
- Design has allowed for trial of components built using AM or '3D printed' stainless steel technology, with integrated cooling channels.
- Plans to test applied equivalence ratio measurement technique, employing quantified chemiluminescence ratios.

Turbulent flows

Imperial College London

- Scalar / Thermal Dissipation rate conditional on mixture fraction ir swirling flows with and without reaction
 - Development of scalar dissipation rate measurements for non-reacting and reacting flows - <u>Experiments in Fluids 55</u>, (2014)
 - Measurements of Scalar Dissipation rate in unsteady gas jets, simulating automotive injectors – <u>Physics of Fluids 27</u>, (2015)
 - Measurements of scalar dissipation rate in non-reacting Swirl burners. Experimental evaluation of SGS models for LES and quantification of the behaviour in the flows – <u>Physics of Fluids 27</u>, (2015), and <u>Physics of Fluids</u> <u>28</u>, (2016)
 - Development of thermal dissipation rate measurements in swirl-stabilised burners based on Rayleigh Scattering – publication in preparation
 - Measurements of Velocity, Temperature, Thermal dissipation rate in swirl stabilised burner using PIV and Rayleigh – publication in preparation

Flow-Flame interactions

- Simultaneous multiple plane measurements of reaction zone and flow velocity field [with emphasis on fractal grid flames]. [Fluid Dyn. Res. 45, (2013); Proc. Comb Inst. 35, (2015) & Combustion and Flame 162, (2015); publication in preparation]
- Volumetric measurements in swirl stabilised burner starting Jan. 2018. This will include flow velocity, reaction zone and fuel concentration

Laser Ignition of jets of gas and liquid fuel

• Experiments in Homogeneous Isotropic Turbulence without mean flow at various levels of turbulence [Proc. Comb Inst. 36, (2017); ongoing]

• Development and application of Laser Diagnostics

- Development of LIBS for Air-Fuel ratio measurements in flames. Sensors for monitoring fuel variability. Applications in swirl burners and gas turbine combustors [18th Int Symp on Applications of Laser Techniques to Fluid Mechanics, Lisbon, Portugal, 4-7 July 2016; ECM 2017; ongoing]
- Flame Chemiluminescence for different fuel blends. Experiments and Detailed chemistry calculations. Sensors for flame monitoring of heat release rate and air-fuel ratio. Application in swirl burners and gas turbine combustors. [AIAA paper 2017-0153; ECM 2017; ongoing]
- CO Laser Induced Fluorescence in Reacting flows [ongoing]
- Development of plenoptic imaging (camera and processing software) [21st ILASS-Japan, Tokyo, Japan, 17-18 December 2012; 18th Int Symp on Applications of Laser Techniques to Fluid Mechanics", Lisbon, Portugal, 4-7 July 2016; ongoing]
- Development of novel flow velocimetry and temperature technique that operates without seeding particles [patent pending]

Gas turbine combustion

Combustion oscillations and control of emissions

- Development of tools for prediction of self-induced combustion oscillations and associated control [ECM 2017; ongoing]
- Non-linear dynamics of time-dependent pressure, flow velocity and heat release rate with and without oscillations [publication in preparation; ongoing]
- Time dependent PIV velocity measurements and OH PLIF measurements conditional on pressure under combustion oscillations [partly complete-preparation of publications; ongoing]
- Effects of Fuel variability and fuel or air dilution by inert gases on combustion [ongoing]

Combustion SIG – Oxford capabilities

Ben Williams, Martin Davy and Richard Stone 28th September 2017

Burner studies

- Laminar flames (Santoro and Gülder, left)
- Firewhirl / fire tornado (centre)
- Turbulent non-premixed burner oxy-fuel (right)

Optical diagnostics

- Temperature (LITGS, Rayleigh, pyrometry)
- Soot volume fraction (pyrometry, extinction)
- Particle size (static light scattering)
- Tomography
- Radical species by LIF and chemiluminescence
 - OH, CH, CH₂O, CN...
- Localised extinction; heat release imaging
- Particle Image Velocimetry, ~10 Hz and 8 kHz
- New laser diagnostics labs in build now

Other methods/comments

- Non-optical methods:
 - Thermophoretic sampling with electron microscopy
 - Fine gauge thermocouple scan
 - Hot wire anemometry

• Exhaust sampling:

- Cambustion Fast-FID
- Cambustion DMS500
- Laminar burners are quite portable

Combustion bomb

- Controlled environment
- Laminar burning velocity
- Schlieren, chemiluminescence

Oxford Cold Driven Shock Tube

- Transient test facility that can reproduce e.g. diesel combustion conditions
- Optically-accessible test section
- Construction / commissioning in progress

- CENTRALLY MOUNTED SINGLE HOLE DIESEL INJECTOR ECN 'SPRAY A'
- HEATED FUEL, 1700 BAR INJECTION PRESSURE

CLOSE UP OF 70 X 30 MM OPTICAL ACCESS WINDOW (x3)

CDST capabilities / diagnostics

Condition	Pressure (bar)	Temperature (K)	Test duration (air driven, ms)	Test duration (He driven, ms)
Low Condition	50	500	5	14
Design – ECN 'Spray A'	60	900	3	10
High condition	120	1500	-	8

- Optical diagnostics activity
 - High speed spray combustion imaging: shadowgraphy, schlieren, Mie scattering. LITGS
- Ignition delay
 - Optical techniques or capture pressure rise at sidewall
- Pre-mixed chemical kinetics studies also planned, with or without spray combustion (dual fuelling)

Shock tube installation

1500 KG

University of Strathclyde Dr Iain Burns

 Flame studies based on laser-induced fluorescence (LII) and laserinduced incandescence (LIF):

- Polycyclic aromatic hydrocarbons (PAH)
- Nanoparticulates / soot
- Intermediates: OH, CH
- Temperature
- Cavity-ring down and cavity-enhanced absorption spectroscopy:
 - Sensitive concentration measurements Intermediates: OH, ¹CH₂, HCO, C₂H₂

Diode laser cavity ring-down spectroscopy in flames

- Previous cavity ring-down work in flames had been based on pulsed dye lasers
- Near infrared diode lasers are used here for in situ cw-CRDS
- Applied to measure acetylene concentration profiles in rich ethylene-air flames

Lll using a Long-Pulsed Fibre Laser

- For reasons of practicality and safety it may be attractive to use pulsed fibre lasers when performing LII in industrial test environments
- Their optical properties differ from typical Nd:YAG lasers, including much longer pulse length
- LII with long-pulse fibre lasers has been compared to reference measurements by 'standard LII' in a stable flat-flame

Robert Roy has a poster

Mastorakos

• **EXPERIMENTAL**

- Swirl flames: extinction, ignition, flame transfer functions
- Annular combustor: flame transfer functions, light-round
- Diagnostics: 10 kHz OH-PLIF, 10 Hz OH-PLIF, 10 Hz CH2O-PLIF, LIBS

<u>COMPUTATIONAL</u>

• LES with Conditional Moment Closure: ignition, blow-off, emissions

Hochgreb Turbulent flames & sprays

OH PLIF

Spray combustion

Chong, C.T., S. Hochgreb, Spray flame structure of rapeseed biodiesel and Jet-A1 fuel, Fuel. 115 (2014) 551–558 doi:10.1016/j.fuel.2013.07.059.

Mohd Yasin, M. F., Cant, R.S., Chong, C.T., Hochgreb, S. Discrete multicomponent model for biodiesel spray combustion simulation, Fuel. 126 (2014) 44–54 doi:10.1016/j.fuel.2014.02.020.

Thermographic PIV

High resolution soot volume fraction via cavity extinction and LII

Laser-Induced Thermal Grating Spectroscopy (LITGS)

Extension:

/Shah/ Hochgreb

1 kHz c measurements entropy spots @ 355 nm (thermoacoustics)

Pump Probe LITGS signal measure c Pump Pulse LIGS Signal 0.8 $\frac{\Lambda}{c_s}$ Signal [a.u.] 0.2 100 200 400 Time Insl 3200 LITGS temperature 3000 Adiabatic flame temperature 2800 Hayakawa, A., et al., 2016. Japanese Symposium on 2000 Combustion, November 23-25, 1800 Sendai, Japan. p. P102. 1600 └── 0.5 $[N_2]/([N_2]+[O_2])$ 0.55 0.6 0.75 0.8 0.85

Thermal Grating

Pump

OH/5 bar CH4 flame

CERS – Cavity enhanced Raman spectroscopy

Further afield

Sheffield (Pourkashanian):

- Downward fired coal
- CCS
- Kinetics of alternative fuels

Loughborough (Carrotte):

- High pressure combustion facility

UCL:

- Heat release imaging

Leeds (Lawes, Bradley):

- Combustion bomb
- Turbulent combustion
- Blow off/liftoff

Edinburgh (Linne, Peterson):

- Femtosecond diagnostics
- Sprays
- Wall effects in engines

Summary

	CAM	CARD	IMP	OXF	STR	OTHER
Comb. Bomb		X		X		
Lam flame	X	X	X	X	X	
Shock tube				X		
Turb. Flame Imaging	X		X	X		EDIN UCL
Sprays	X	X	X	X		EDIN BRI
High pressure		X		X		EDIN
Diag. develop.	X			X	X	

Future opportunities

- Joining existing facilities and diagnostics capabilities for addressing difficult problems (e.g. shock tube + cw laser diagnostics; high pressure facilities + imaging diagnostics, high frequency diagnostics + entropy spots)
- Exchanging experience: training PhD/RAs in a wider range of techniques (e.g. TDLAS, PIV) or in greater depth
- Addressing key problems in modelling (e.g. subgrid assumptions, assumed closure pdfs), and motivate/justify new facilities/projects (e.g. fs-CARS at Edinburgh for detailed work in flames)
- ... and much much more...